首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Systematic first principle calculations have been used to explain the dangling bonds behaviour in the rolling up of a boron nitride nanoribbon (BNNR) to construct a single-walled boron nitride nanotube (BNNT). We found in armchair BNNR two degenerate dangling bonds split and move up to higher energies due to symmetry breaking of system. While in zigzag BNNR changing the topology of system does not affect on metallic features of the band structure, but in unzipped BNNT case a metallic-semimetallic phase transition occurs. Considering the width dependent electronic properties of hydrogen passivated armchair BNNRs, exhibit zigzag behaviour of energy gap in agreement with previous results.  相似文献   

2.
采用基于密度泛函理论的第一性原理计算方法, 研究了氮化硼纳米管六元环中心吸附5d过渡金属原子后体系的几何结构, 电子结构和磁性性质. 研究发现, 吸附原子向一个氮原子或硼原子偏移; 吸附体系在费米能级附近出现明显的杂质能级; 各个体系的总磁矩随原子序数出现规律性变化, 局域磁矩主要分布在吸附原子上.  相似文献   

3.
The properties of boron nitride nanotubes composed of four- and eight-membered rings (referred to as four-eight-membered rings BNNTs) were calculated using density functional theory (DFT). The calculated results show that the band gap of the four-eight-membered rings BNNTs is greatly reduced, down to a range of 2.530–3.975 eV. The band gap decreases as the number of walls increases, not only enabling the allotropes to show semiconductor properties but also to fully meet the third-generation semiconductor band gap requirements, furthermore, the band gap decreases significantly with the number of walls increases.  相似文献   

4.
High-pressure effects on the lattice dynamics and dielectric properties of the BN, BP, BAs, BSb and BBi alloys have been carried out using the density-functional perturbation theory within the local density approximation. We study the variation of the optical phonon frequencies (ωTO and ωLO), the high-frequency dielectric coefficient (ε) and the dynamic effective charge (Z*) with pressure. The ωTO and ωLO have a quadratic form with pressure for all boron compounds. The obtained ε and Z* for BN, BP remain constant with pressure. However, for BAs, BSb and BBi, ε and Z* have a quadratic form with pressure. Our results are in good agreement with the available experimental data for BN and BP and they allow prediction for BAs, BSb and BBi.  相似文献   

5.
Since nucleobase-functionalized carbon nanotubes (CNTs) are important in the biological applications; the junction of a pair of CNTs through a bridging cytosine linkage is investigated based on density functional theory (DFT) calculations. In the exact model of study, the CNTs are bound to N1 and C5 atomic sites of cytosine to make possible the CNT–cytosine–CNT model. To systematically investigate the purpose, the models of original CNT, original cytosine, and primary models of cytosine–CNT in which one CNT is only bound to N1 or C5 atomic site of cytosine are also considered. The results of dipole moments and binding energies indicated that the CNT–cytosine–CNT model is the most stable one among all three possible models cytosine-functionalized CNT. The values of energy gaps indicated that the conducting properties of primary cytosine–CNT models are not changed referring to the original CNT but better conductivity could be observed for the CNT–cytosine–CNT model. The values of evaluated quadrupole coupling constants indicated that the electronic densities of nitrogen and oxygen atoms of cytosine detect notable affects during the functionalization processes by the zigzag CNTs and the oxygen atom of CNT–cytosine–CNT model could be proposed as the most proper interacting site of cytosine among other functionalized zigzag models and also the original cytosine. However, the changes of quadrupole coupling constants for the atoms of cytosine are almost negligible during the functionalization processes by the armchair CNTs.  相似文献   

6.
Potential energy curves, equilibrium interatomic distances, term energies and harmonic vibration frequencies for the 16 lowest states of neutral carbon monoxide and the six lowest states of singly ionized carbon monoxide are calculated by density functional theory (DFT) and linear-response time-dependent density functional (LR-TDDFT) theory. The results are compared with experimental data. The two theories, DFT and LR-TDDFT, are described briefly.  相似文献   

7.
A theoretical study of structural and electronic properties of the four phases of BN (zincblende, wurtzite, hexagonal and rhombohedral) is presented. The calculations are done by full potential (linear) augmented plane wave plus local orbitals (APW+lo) method based on the density functional theory (DFT) as employed in WIEN2k code. Using the local density approximation (LDA) and generalized gradient approximation (GGA-PBE) for the exchange correlation energy functional, we have calculated lattice parameters, bulk modulus, its pressure derivative and cohesive energy. In order to calculate electronic band structure, another form of the generalized gradient approximation proposed by Engel and Vosko (GGA-EV) has been employed along with LDA and GGA-PBE. It is found that all the three approximations exhibit similar band structure qualitatively. However, GGA-EV gives energy band gap values closer to the measured data. Our results for structural and electronic properties are compared with the experimental and other theoretical results wherever these are available.  相似文献   

8.
We studied adsorption of several molecules (CO, CO2, H2O, N2O, NO, NO2, and O2) on hexagonal boron nitride (h-BN) monolayers supported on transition metal (TM) surfaces, using density functional calculations. We observed that all the molecules bind very weakly on the pristine h-BN, with binding energies in the range of 0.02–0.03 eV. Interestingly, however, when h-BN is supported on the TM surface, NO2 and O2 become strongly chemisorbed on h-BN, with binding energies of >1 eV, whereas other molecules still physisorbed, with binding energies of ~0.1 eV at most. The electron transfer from TM to pz states of h-BN played a substantial role in such strong bindings of NO2 and O2 on h-BN, as these molecules possess unpaired electrons that can interact with pz states of h-BN. Such selective molecular binding on h-BN/TM originates from the peculiar distribution of the spin-polarized highest occupied and lowest unoccupied molecular orbitals of NO2 and O2. Strong molecular adsorption and high selectivity would make the h-BN/TM system possible for a variety of applications such as catalysts and gas sensors.  相似文献   

9.
基于密度泛函理论系统研究了碳化钛(TiC)和氮化钛(TiN)非极性(001)表面吸附气体分子和原子的性能。鉴于这些材料拥有不同的电子结构特征,发现受电子的CO分子或未饱和的O和H原子在TiC(001)和TiN(001)表面吸附于不同的活性位点,而供电子的NH3和H2O气体分子或完全饱和的O2和H2分子仅倾向与两个表面的金属原子位点结合。这些吸附特性可能与此类材料表面的电子结构有关。  相似文献   

10.
Applying density functional treatment based on wavelets, we have investigated the stability of polymer–colloidal solutions in which polymer surfactants can form globules or adsorb at colloidal particles. The results have indicated that the solution becomes unstable due to the aggregation and formation of dimers and trimers when colloidal concentration exceeds the critical one.  相似文献   

11.
Structure and physical properties of anatase TiO2 (101) surface doped with copper have been studied by using density functional theory. Results show that Cu@Ti and Cu@O systems behave as p and n type semiconductors, respectively. Anatase TiO2 (101) surface exhibits a blue shift in optical absorption spectra compared with pure TiO2 bulk materials. Enhanced photocatalytic activity at wavelength around 400 nm could be contributed by the change in electronic structure.  相似文献   

12.
A hierarchical approach bridging the atomistic and nanometric scales is used to compute the elastic properties of boron nitride nanosheets and nanoribbons, examining the effect of sheet size, aspect ratio and anisotropy. The approach consists in obtaining the bond force (force field) constants by dedicated computations based on density functional theory (DFT) and using such constants as input for larger scale structural models solved by finite element analysis (FEA). The bond force constants calculated by DFT are 616.9 N/m for stretching, 6.27×1019 Nm/rad2 for in-plane rotation and 1.32×1019 Nm/rad2 for dihedral rotation. Using these constants, the elastic properties of boron nitride nanosheets and nanoribbons predicted by FEA are almost independent of the sheet size, but strongly dependent on their aspect ratio. The sheet anisotropy increases with increased aspect ratio, with nanoribbons of aspect ratios of 10 exhibiting a ratio of elastic moduli along both in-plane directions of 1.7.  相似文献   

13.
Atomic models of the hypothetical single- and multi-walled cylindrical- and prismatic-like TiC nanotubes have been constructed and their structural and electronic properties have been studied by means of density functional-based tight binding (DFTB) method. The electronic bands, densities of states and binding energies are analyzed as a function of the TiC tubes sizes. Our calculations showed that TiC nanotubes are semiconducting, in contrary to the metallic-like crystalline TiC, and the band gaps tend to vanish as the number of tube walls increase.  相似文献   

14.
The electronic and magnetic properties for a single Fe atom chain wrapped in armchair (n,n) boron nitride nanotubes (BNNTs) (4≤n≤6) are investigated through the density functional theory. By increasing the nanotube diameter, the magnetic moments, total magnetic moments and spin polarization of systems are increased. We have calculated the majority and minority density of states (DOS) of armchair BNNT. Our results show that the magnetic moment of the system come mostly from the Fe atom chain. The magnetic moment on an Fe atom, the total magnetic moment and spin polarization decrease by increasing the axial separation of the Fe atom chain for the system. The BNNT can be used in the magnetic nanodevices because of higher magnetic moment and spin polarization.  相似文献   

15.
Two models of (10, 0) boron nitride nanotubes (BNNTs), perfect and Ammonia-attached, were studied in order to evaluate the influence of NH3-attaching on the B-11 and N-15 nuclear magnetic resonance in the (10, 0) boron-nitride nanotube (BNNT) for the first time. At first, based on density functional theory (DFT) each of the structures was optimized using B3LYP/6-31G (d) model chemistry. At the next step, the chemical-shielding (CS) tensors were calculated using the B3LYP/6-31G (d, p) level of theory in both of the relaxed forms and were converted to experimentally measurable nuclear magnetic resonance (NMR) parameters, i.e. chemical-shielding isotropic (CSI) and chemical-shielding anisotropic (CSA). Our calculation revealed that in the NH3-attached BNNT (the most stable model) the B atom chemically bonded to the NH3 molecule has the largest chemical-shielding isotropic (CSI) and the smallest chemical-shielding anisotropic (CSA) values among the other boron nuclei. Additionally, the NMR parameters of those nuclei directly bonded to the boron dramatically change while those of the other B nuclei remain almost unchanged.  相似文献   

16.
《Physics letters. A》2019,383(17):2076-2081
We have theoretically investigated the effect of applying longitudinal and transverse electric field on silicon carbide nanotubes with different orientations of Stone Wales defects. We found that each type of Stone Wales defects maintained different formation energy. We have also successfully proved that the orientation of Stone Wales defects in silicon carbide nanotubes response quite differently upon applying external electric field, whereas, two important and interesting phenomena were observed. First, the semiconductor-metal phase transition occurred in silicon carbide nanotubes as well as the three types of Stone Wales defects. However, clear band gap variations were observed in all silicon carbide nanotubes under study. Second, the band gap variations in pristine silicon carbide nanotubes and nanotubes with different orientations of Stone Wales defects have the same trend, even though all silicon carbide nanotubes have clear band gap values under different strengths of the applied external electric field. However, band gap tuning under longitudinal electric field is less significant compared to band gap tuning under the transverse electric field.  相似文献   

17.
《Physics letters. A》2020,384(2):126057
First-principle calculations were performed to investigate the adsorption behavior of NO2 gas on the pristine graphitic carbon nitride (gCN) and transition metals (TM)-embedded gCN systems (TM = Co, Rh, and Ir elements) in order to explore the sensing capabilities of gCN systems as toxic gas sensor. The results of adsorption energy revealed that NO2 gas was physisorbed on the pristine gCN, whereas this gas was strongly chemisorbed on the TM-embedded gCN. Additionally, it was found that the interaction of NO2 gas with Ir-embedded gCN (−4.47 eV) is much higher than those of the Co and Rh-embedded systems, alluding to its suitability as a highly sensitive gas sensor. The obtained results displayed that the electronic and magnetic properties of the gCN systems remarkably modulated by chemisorption of NO2 gas. The strong interactions between the TM-embedded gCN and NO2 gas induced dramatic changes on the conductivity of the systems and led a large reduction in the band gap energy. The results of spin-polarized band structure and density of states indicated that with adsorption of NO2 gas over the Rh- and Ir-embedded gCN, the magnetic moment of these systems remarkably reduced from 0.10 to 0.07 and 0.01 μB, respectively. Additionally, the results of partial density of states indicated that with adsorption of NO2 gas over the pristine and TM-embedded gCN systems, the sharp peaks close to the Fermi energy levels of TM-embedded gCN were significantly increased in comparison with the pristine gCN, thanks to the large charge transfer from d-orbitals of the TM atoms to p-orbitals of NO2 gas. Furthermore, the results of optimized structure showed that with embedding Co-, Rh-, and Ir-elements and also adsorption of NO2 gas on the gCN, the initial planar structure of the pristine gCN automatically became wrinkle. Finally, based on the obtained results, it can be concluded that the high adsorption energy and considerable charge transfer between NO2 gas and Ir-embedded gCN make this system as an excellent candidate for NO2 gas sensor applications.  相似文献   

18.
We studied affinity of pure and Ni, Pd and Pt-doped (7, 0) boron nitride nanotubes (BNNTs) to toxic HCN molecules using density functional theory calculations. The results indicated that the pure (7, 0) BNNTs can weakly adsorb HCN molecules with adsorption energy of ?0.2474 eV. Upon adsorption of HCN molecules on this nanotube, the band gap energy was decreased from 3.320 to 2.960 eV. The more negative adsorption energy between these transition metal-doped (7, 0) BNNTs and HCN molecules indicated that doping of (7, 0) BNNTs with Ni, Pd and Pt elements can significantly improve the affinity of BNNTs toward this gas. Additionally, it was found that the interaction energy between HCN molecules and Pt-doped BNNTs is more negative than those of the Ni and Pd-doped BNNTs. These observations suggested that the Pt-doped (7, 0) BNNTs are strongly sensitive to HCN molecules and therefore it may be used in gas sensor devices for detecting this toxic gas.  相似文献   

19.
20.
In this paper, we investigate the oscillation of a fullerene that is moving within the centre of a bundle of nanotubes. In particular, certain fullerene–nanotube bundle oscillators, namely C60-carbon nanotube bundle, C60-boron nitride nanotube bundle, B36N36-carbon nanotube bundle and B36N36-boron nitride nanotube bundle are studied using the Lennard–Jones potential and the continuum approach which assumes a uniform distribution of atoms on the surface of each molecule. We address issues regarding the maximal suction energies of the fullerenes which lead to the generation of the maximum oscillation frequency. Since bundles are also found to comprise double-walled nanotubes, this paper also examines the oscillation of a fullerene inside a double-walled nanotube bundle. Our results show that the frequencies obtained for the oscillation within double-walled nanotube bundles are slightly higher compared to those of single-walled nanotube bundle oscillators. Our primary purpose here is to extend a number of established results for carbon to the boron nitride nanostructures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号