共查询到20条相似文献,搜索用时 0 毫秒
1.
Preparation of transparent and conducting indium doped CdO thin films by spray pyrolysis on glass substrate is reported for various concentration of indium (2-8 wt%) in the spray solution. The electrical, optical and structural properties of indium doped CdO films were investigated using different techniques such as Hall measurement, optical transmission, X-ray diffraction and scanning electron microscope. X-ray analysis shows that the undoped CdO films are preferentially orientated along (2 0 0) crystallographic direction. Increase of indium doping concentration increases the films packing density and reorient the crystallites along (1 1 1) plane. A minimum resistivity of 4.843×10−4 Ω cm and carrier concentration of 3.73×1020 cm−3 with high transmittance in the range 300-1100 nm were achieved for 6 wt% indium doping. The band gap value increases with doping concentration and reaches a maximum of 2.72 eV for 6 wt% indium doping from 2.36 eV of that of undoped film. The minimum resistivity achieved in the present study is found to be the lowest among the reported values for In-doped CdO films prepared by spray pyrolysis method. 相似文献
2.
R. Mariappan V. Ponnuswamy A. Chandra Bose R. Suresh M. Ragavendar 《Journal of Physics and Chemistry of Solids》2014
Yttrium doped Zinc Oxide (YxZn1−xO) thin films deposited at a substrate temperature 400 °C. The effect of substrate temperature on the structural, surface morphology, compositional, optical and electrical properties of YxZn1−xO thin films was studied. X-ray diffraction studies show that all films are polycrystalline in nature with hexagonal crystal structure having highly textured (002) plane parallel to the surface of the substrate. The structural parameters, such as lattice constants (a and c), crystallite size (D), dislocation density (δ), microstrain (σ) and texture coefficient were calculated for different yttrium doping concentrations (x). High resolution scanning electron microscopy measurements reveal that the surface morphology of the films change from platelet like grains to hexagonal structure with grain size increase due to the yttrium doping. Energy dispersive spectroscopy confirms the presence of Y, Zn and O elements in the films prepared. Optical studies showed that all samples have a strong optical transmittance higher than 70% in the visible range. A slight shift of the absorption edge towards the large wavelengths was observed as the Y doping concentration increased. This result shows that the band gap is slightly decreased from 3.10 to 2.05 eV with increase of the yttrium doping concentrations (up to 7.5%) and then slightly increased. Room temperature PL measurements were done and the band-to-band emission energies of films were determined and reported. The complex impedance of the 10%Y doped ZnO film shows two distinguished semicircles and the diameter of the arcs got decreased in diameter as the temperature increases from 70 to 175 °C. 相似文献
3.
V. GokulakrishnanS. Parthiban K. JeganathanK. Ramamurthi 《Applied Surface Science》2011,257(21):9068-9072
Zirconium doped zinc oxide thin films with enhanced optical transparency were prepared on Corning 1737 glass substrates at the substrate temperature of 400 °C by spray pyrolysis method for various doping concentrations of zirconium (IV) chloride in the spray solution. The X-ray diffraction studies reveal that the films exhibit hexagonal crystal structure with polycrystalline grains oriented along (0 0 2) direction. The crystalline quality of the films is found to be deteriorating with the increase of doping concentration and acquires amorphous state for higher concentration of 8 at.% in precursor solution. The average transmittance for 5 at.% (solution) zirconium doped ZnO film is significantly increased to ∼92% in the visible region of 500-800 nm. The room temperature photoluminescence (PL) spectra of films show a band edge between 3.41 and 3.2 eV and strong blue emission at 2.8 eV irrespective of doping concentration and however intensity increases consistently with doping levels. The vacuum annealing at 400 °C reduced the resistivity of the films significantly due to the coalescence of grains and the lowest resistivity of 2 × 10−3 Ω cm is observed for 3 at.% (solution) Zr doped ZnO films which envisages that it is a good candidate for stable TCO material. 相似文献
4.
Thin films of ZnO have been prepared on glass substrates at different thicknesses by spray pyrolysis technique using 0.2 M aqueous solution of zinc acetate. X-ray diffraction reveals that the films are polycrystalline in nature having hexagonal wurtzite type crystal structure. The resistivity at room temperature is of the order 10−2 Ω cm and decreased as the temperature increased. Films are highly transparent in the visible region. The dependence of the refractive index, n, and extinction coefficient, k, on the wavelength for a sprayed film is also reported. Optical bandgap, Eg, has been reported for the films. A shift from Eg = 3.21 eV to 3.31 eV has been observed for deposited films. 相似文献
5.
Superhydrophobic and transparent ZnO thin films synthesized by spray pyrolysis technique 总被引:1,自引:0,他引:1
N.L. Tarwal 《Applied Surface Science》2010,256(24):7451-1072
Superhydrophobic and transparent zinc oxide (ZnO) thin films were deposited by a simple and cost effective spray pyrolysis technique (SPT) onto the glass substrates at 723 K from an aqueous zinc acetate precursor solution. The solution concentration was varied from 0.1 to 0.4 M and its effect on structural, morphological, wetting and optical properties of ZnO thin films was studied. The synthesized films were found to be polycrystalline, with preferential growth along c-axis. A slight improvement in the crystallite size and texture coefficient is observed as the concentration of the solution is increased. SEM micrographs show the uniform distribution of spherical grains of about 60-80 nm grain size. The films were specular and highly transparent with average transmittance of about 85%. The spectrum shows sharp absorption band edge at 381 nm, corresponding to optical gap of 3.25 eV. The samples of texture coefficient less than 90% and roughness less than 75 nm are hydrophobic and above these values they become superhydrophobic in nature. The hydrophobicity coupled with high transmittance is of great importance in commercial application such as transparent self-cleaning surfaces, anti-fog, anti-snow, fluid microchips and microreactors. 相似文献
6.
F. Kadi Allah S. Yapi Abé C.M. Núñez L. Cattin A. Bougrine F.R. Díaz 《Applied Surface Science》2007,253(23):9241-9247
Al or Sn doped ZnO films were deposited by spray pyrolysis using aqueous solutions. The films were deposited on either indium tin oxide coated or bare glass substrates. ZnCl2, AlCl3 and SnCl2 were used as precursors. The effect of ZnCl2 molar concentration (0.1-0.3 M) and doping percentage (2-4% AlCl3 or SnCl2) have been investigated. The main goal of this work being to grow porous ZnO thin films, small temperature substrates (200-300 °C) have been used during the spray pyrolysis deposition. It is shown that, if the X-ray diffraction patterns correspond to ZnO, the films deposited onto bare glass substrate are only partly crystallized while those deposited onto ITO coated glass substrate exhibit better crystallization. The homogeneity of the films decreases when the molar concentration of the precursor increases, while the grain size and the porosity decrease when the Al doping increases. The optical study shows that band tails are present in the absorption spectrum of the films deposited onto bare glass substrate, which is typical of disordered materials. Even after annealing 4 h at 400 °C, the longitudinal resistivity of the films is quite high. This result is attributed to the grain boundary effect and the porosity of the films. Effectively, the presence of an important reflection in the IR region in samples annealed testifies of a high free-carriers density in the ZnO crystallites. Finally it is shown that when deposited in the same electrochemical conditions, the transmission of a polymer film onto the rough sprayed ZnO is smaller than that onto smooth sputtered ZnO. 相似文献
7.
N.L. TarwalV.V. Shinde A.S. KambleP.R. Jadhav D.S. PatilV.B. Patil P.S. Patil 《Applied Surface Science》2011,257(24):10789-10794
A simple and inexpensive spray pyrolysis technique (SPT) was employed for the synthesis of nanocrystalline zinc oxide (ZnO) thin films onto soda lime glass and tin doped indium oxide (ITO) coated glass substrates at different substrate temperatures ranging from 300 °C to 500 °C. The synthesized films were polycrystalline, with a (0 0 2) preferential growth along c-axis. SEM micrographs revealed the uniform distribution of spherical grains of about 80-90 nm size. The films were transparent with average visible transmittance of 85% having band gap energy 3.25 eV. All the samples exhibit room temperature photoluminescence (PL). A strong ultraviolet (UV) emission at 398 nm with weak green emission centered at 520 nm confirmed the less defect density in the samples. Moreover, the samples are photoelectrochemically active and exhibit the highest photocurrent of 60 μA, a photovoltage of 280 mV and 0.23 fill factor (FF) for the Zn450 films in 0.5 M Na2SO4 electrolyte, when illuminated under UV light. 相似文献
8.
M. Humayan Kabir M. Al amin M.S. Rahman M.K.R. Khan 《Chinese Journal of Physics (Taipei)》2018,56(5):2275-2284
Zinc oxide (ZnO) and aluminium (Al) doped zinc oxide (AZO) thin films have been fabricated by spray pyrolysis technique in normal atmospheric condition. Samples of different Al-concentrations (0–5% Al) were deposited at 350 °C onto glass substrate to study the structural, morphological, optical and photoluminescence properties. X-ray diffraction study confirms that the films are polycrystalline having hexagonal structure. SEM images show that the films have rope and tube like morphology. Optical properties, such as transmittance, optical band gap, extinction coefficient, refractive index, optical conductivity, dielectric constants and electron energy loss functions were analyzed and discussed. Results show that the optical parameters have been changed significantly with Al-doping concentration. The photoluminescence spectra indicate that the PL peaks originated from deep level emissions (DLE) with different intensities for ZnO and Al-doped ZnO films. 相似文献
9.
The effects of biaxial stress in ZnO:Ga thin films on different substrates, e.g., sapphire(0001), quartz, Si(001), and glass have been investigated by X-ray diffraction, atomic force microscopy, and electrical transport and ellipsometric measurements. A strong dependence of orientation, crystallite size, transport, and electronic properties upon the substrate-induced stress has been found. The structural properties indicate that a tensile stress exists in epitaxial ZnO:Ga films grown on sapphire, Si, and quartz, while a compressive stress appears in films grown on glass. The resistivity of the films decreased with increasing biaxial stress, which is inversely proportional to the product of the carrier concentration and Hall mobility. The refractive index n was found to decrease with increasing biaxial stress, while the optical band gap E0 increased with stress. These behaviors are attributed to lattice contraction and the increase in the carrier concentration that is induced by the stress. Our experimental data suggest that the mechanism of substrate-induced stress is important for understanding the properties of ZnO:Ga thin films and for the fabrication of devices which use these materials. 相似文献
10.
Nickel oxide thin films were successfully fabricated with various deposition time (td = 5, 10, and 15 min) on glass substrates using spray pyrolysis technique. The deposited films undergo thermal treatment at 350 °C for various annealing time (ta = 0, 15, 30 and 60 min). In this study, the effect of td and ta on film thickness was observed and their influence on structural, morphological and optical properties were investigated. The films deposited with td = 5 min showed amorphous structure while the films grown at higher deposition time became partially crystallized with preferred growth along (1 1 1) direction. Heat treatment carried out in air allowed us to tune the polycrystalline structure and the diffraction intensity at preferred peak increases with the increase in ta which is a consequence of better crystallinity. This was reflected in the AFM micrographs of the films which suggested that the thermal annealing (or increasing ta) facilitates the process of grain-growth, and improves the crystalline microstructure. The optical transmission of the films was found to vary with td and ta and thus film thickness. The thinner films show higher transparency in the UV–vis spectral region. The optical band gap was blue-shifted from 3.35 eV to 3.51 eV depending on ta. The effect of ta on the various optical constants of the NiO films has also been discussed. 相似文献
11.
A.V. Moholkar S.M. Pawar K.Y. Rajpure C.H. Bhosale J.H. Kim 《Applied Surface Science》2009,255(23):9358-9364
The undoped and fluorine doped thin films are synthesized by using cost-effective spray pyrolysis technique. The dependence of optical, structural and electrical properties of SnO2 films, on the concentration of fluorine is reported. Optical absorption, X-ray diffraction, scanning electron microscope (SEM) and Hall effect studies have been performed on SnO2:F (FTO) films coated on glass substrates. The film thickness varies from 800 to 1572 nm. X-ray diffraction pattern reveals the presence of cassiterite structure with (2 0 0) preferential orientation for FTO films. The crystallite size varies from 35 to 66 nm. SEM and AFM study reveals the surface of FTO to be made of nanocrystalline particles. The electrical study reveals that the films are degenerate and exhibit n-type electrical conductivity. The 20 wt% F doped film has a minimum resistivity of 3.8 × 10−4 Ω cm, carrier density of 24.9 × 1020 cm−3 and mobility of 6.59 cm2 V−1 s−1. The sprayed FTO film having minimum resistance of 3.42 Ω/cm2, highest figure of merit of 6.18 × 10−2 Ω−1 at 550 nm and 96% IR reflectivity suggest, these films are useful as conducting layers in electrochromic and photovoltaic devices and also as the passive counter electrode. 相似文献
12.
Optical properties of iridium oxide films fabricated by the spray pyrolysis technique (SPT) have been investigated. The transmission and reflection spectra of the sprayed films were measured by using a double-beam spectrophotometer in the wavelength range from 200 to 2500 nm. Influences of the preparative parameters; namely, substrate temperature (350-500 °C) and solution molarity (0.005-0.03 M), on the optical characteristics were examined. The solution molarity of the iridium chloride solution was varied so as to prepare iridium oxide thin films with thicknesses ranging from 160 to 325 nm. Some important characteristics of optical absorption, such as optical dispersion energies, the dielectric constant, the ratio of the number of charge carriers to the effective mass, the single oscillator wavelength, and the average value of the oscillator strength, were evaluated. The value of the refractive index was found to depend on the chemical composition as well as the degree of stoichiometry of IrO2. The values obtained for the high frequency dielectric constant through two procedures are in the range of 2.8-3.9 and 3.3-4.6 over the relevant ranges of the substrate temperature and solution molarity, respectively. Analysis of the energy dispersion curve of the absorption coefficient indicated a direct optical transition with the bandgap energy ranging between 2.61 and 2.51 eV when the substrate temperature increases from 350 to 500 °C. 相似文献
13.
Molybdenum-doped iridium oxide thin films have been deposited onto corning glass- and fluorine-doped tin oxide coated corning glass substrates at 350 °C by using a pneumatic spray pyrolysis technique. An aqueous solution of 0.01 M ammonium molybdate was mixed with 0.01 M iridium trichloride solution in different volume proportions and the resultant solution was used as a precursor solution for spraying. The as-deposited samples were annealed at 600 °C in air medium for 1 h. The structural, electrical and optical properties of as-deposited and annealed Mo-doped iridium oxide were studied and values of room temperature electrical resistivity, and thermoelectric power were estimated. The as-deposited samples with 2% Mo doping exhibit more pronounced electrochromism than other samples, including pristine Ir oxide. 相似文献
14.
The physical, chemical, electrical and optical properties of as-deposited and annealed CdIn2O4 thin films deposited using spray pyrolysis technique at different nozzle-to-substrate distances are reported. These films are characterized by X-ray diffraction, XPS, SEM, PL, Hall effect measurement techniques and optical absorption studies. The average film thickness lies within 600-800 nm range. The X-ray diffraction study shows that films exhibit cubic structure with orientation along (3 1 1) plane. The XPS study reveals that CdIn2O4 films are oxygen deficient. Room temperature PL indicates the presence of green shift with oxygen vacancies. The typical films show very smooth morphology. The best films deposited with optimum nozzle-to-substrate distance (NSD) of 30 cm, has minimum resistivity of 1.3 × 10−3 Ω cm and 2.6 × 10−4 Ω−1 figure of merit. The band gap energy varies from 3.04 to 3.2 eV with change in NSD for annealed films. The effect of NSD as well as the annealing treatment resulted into the improvement of the structural, electrical and optical properties of the studied CdIn2O4 thin films. 相似文献
15.
16.
M. Alaoui Lamrani Z. Sofiani B. Sahraoui A. El Hichou J.C. Bernède 《Optics Communications》2007,277(1):196-201
We have deposited zinc oxide (ZnO) and erbium doped zinc oxide (ZnO:Er) thin films on heated glass substrates using spray pyrolysis technique. The effect of erbium dopant on structural, morphological, luminescent and nonlinear optical properties was studied. The deposited films have been analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), ex situ compositional analysis (ESCA), profilometry, cathodoluminescence (CL) and third harmonic generation (THG) measurements. All films were polycrystalline, having a preferential growth orientation along the ZnO (0 0 2) plane, with a corresponding average crystallite size of less than 41 nm. Addition of erbium can effectively control the film surface morphology and its cathodoluminescent properties. The films containing low erbium concentration show a uniform surface covered with hexagonal shaped grains and a strong UV light emission intensity as well as TH response. In contrast, when the erbium doping ratio exceeds 3%, a porous surface with columnar textural growth becomes more pronounced, and a substantial reduction of the cathodoluminescent and TH response. A strong TH signal was obtained for the film with good crystalline quality at the concentration of 2%. Third order nonlinear optical susceptibility (χ〈3〉) values of the studied materials were in the remarkable range of 10−12 esu. 相似文献
17.
In this work, we have reported the effect of In doping on structural, optical and surface properties of copper oxide films obtained by a low-cost ultrasonic spray pyrolysis technique. Thicknesses, refractive indices and extinction coefficients of the films have been determined by Spectroscopic ellipsometry technique using Cauchy-Urbach model for fitting. A very good agreement was found between experimental and theoretical parameters with low MSE values. Transmission and reflectance spectra have been taken by UV Spectrophotometer, and band gap values have been determined by optical method. Structural properties of the films were investigated with X-ray diffraction patterns. In doping caused the films to growth through some certain directions. Atomic force microscope images have been taken to see the effect of In doping on surface topography and roughness of copper oxide films. Surface properties of undoped films have been improved by In doping. Lowest roughness values have been obtained for In doping at 1%. As a result, we have concluded that properties of copper oxide films which are commonly used in solar cells may have improved by In doping (especially In doped at 1%). 相似文献
18.
K. Ravichandran R. Mohan N. Jabena Begum K. Swaminathan C. Ravidhas 《Journal of Physics and Chemistry of Solids》2013
Undoped and simultaneously (Sn+F) doped ZnO thin films were fabricated using a simplified spray pyrolysis technique and the effects of Sn doping level on their electrical, structural, optical and surface morphological properties were studied. The XRD patterns confirmed the hexagonal wurtzite structure of ZnO. The minimum electrical resistivity of 0.45×10−2 Ω cm was obtained for ZnO films having Sn+F doping levels of 8+20 at%. All the films exhibited average optical transmittance of 85% in the visible region, suitable for transparent electrode applications. The overall quality of the fabricated films was confirmed from photoluminescence (PL) studies. The PL and surface morphological studies along with the elemental analysis showed the increase of Sn diffusion into the ZnO lattice which was consistent with the concentration of Sn in the starting solution. The results of the analysis of physical properties of simultaneously doped ZnO films proved that these films might be considered as promising candidates for solar cells and other opto-electronic applications. 相似文献
19.
Salah Boulmelh 《光谱学快报》2013,46(10):524-530
AbstractThe aim of this paper is the study of transparent undoped zinc oxide thin films obtained by spray pyrolysis technique on glass substrates heated at 350?°C from 0.1 to 0.4?mol solution concentrations using zinc acetate dehydrate as precursor. The X-ray diffraction patterns and Raman spectrometry with respect to Urbach energy and wurtzite structure, show that the maximum value of the high frequency intensity E2 and the optimal value of the optical gap are obtained at 0.2?mol concentration. Furthermore, an appropriate transparency is obtained and that makes these films suitable for photovoltaic windows layer cells. 相似文献
20.
Fluorine (F) incorporated polycrystalline SnO2 films have been deposited onto glass substrates by ultrasonic spray pyrolysis technique. To possess information about the electrical properties of all films, their electrical conductivities were investigated depending on the temperature, and their activation and trap energies were analyzed. The crystalline structure, surface properties and elemental analysis of the SnO2 films were examined to determine the effect of the F element. After all investigations, it was concluded that each fluorine incorporation rate has a different and important effect on the physical properties, and SnO2:F (3 at%) films were found to be the most promising sample for energy conversion devices, especially as conducting electrode in solar cells with its improved structural and electrical properties as compared to others. 相似文献