首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We performed density functional theory (DFT) calculations to investigate the properties of silicon-doped (Si-doped) models of representative (4,4) armchair and (6,0) zigzag aluminum phosphide nanotubes (AlPNTs). The structures were allowed to relax and the chemical shielding (CS) parameters were calculated for the atoms of optimized structures. The results indicated that the band gap energies and dipole moments detect the effects of dopant. The CS parameters also indicated that the Al and P atoms close to the Si-doped region are such reactive atoms, which make the Si-doped AlPNTs more reactive than the pristine AlPNTs. Moreover, replacement of P atom by the Si atom makes AlPNT more reactive than the replacement of Al atom by the Si atom.  相似文献   

2.
In this work, an armchair model of the (4,4) boron phosphide nanotubes (BPNTs) with a 1-nm length and consisting of 32 B and 32 P atoms is considered to study the influence of doping three atoms of aluminum in sites of boron (B3AlPNTs) and three atoms of nitrogen in sites of phosphors (BP3NNTs) on the electrostatic structure properties. The mouths of nanotubes are capped by hydrogen atoms in order to saturate the dangling bonds of the boundaries and to decrease the calculation time. The structures of BPNTs, B3AlPNTs and BP3NNTs are optimized by performing the level of density functional theory (DFT) using 6-31G? basis set. The optimized structures are used for calculating the chemical shielding (CS) tensors and nuclear magnetic resonance parameters such as isotropic chemical shielding (CSI) and anisotropic chemical shielding (CSA). The results reveal that in both models of B3AlPNTs and BP3NNTs by doping N atoms the chemical shielding parameters of P and B atoms, which are directly connected to the Al and N atoms decreased and the other sites significantly changed.  相似文献   

3.
The first-principles density-functional theory is used to study the geometrical structures and field emission properties of different boron nitride nanocones with 240 disclination. It is found that the nanocones can be stable under applied electric field and the emission current is sensitively dependent on the tips of nanocones. The nanocones with homonuclear bonds at the tip can introduce additional energy states near Fermi level, which can reduce the ionization potential and increase the emission current of these boron nitride nanocones. This investigation indicates that the boron nitride nanocone can be a promising candidate as a field emission electron source.  相似文献   

4.
In this work, we apply first-principles methods to investigate the stability and electronic structure of BC4N nanostructures which were constructed from hexagonal graphite layers where substitutional nitrogen and boron atoms are placed at specific sites. These layers were rolled up to form zigzag and armchair nanotubes, with diameters varying from 7 to 12 Å, or cut and bent to form nanocones, with 60° and 120° disclination angles. The calculation results indicate that the most stable structures are the ones which maximize the number of B–N and C–C bonds. It is found that the zigzag nanotubes are more stable than the armchair ones, where the strain energy decreases with increasing tube diameter D, following a 1/D 2 law. The results show that the 60° disclination nanocones are the most stable ones. Additionally, the calculated electronic properties indicate a semiconducting behavior for all calculated structures, which is intermediate to the typical behaviors found for hexagonal boron nitride and graphene.  相似文献   

5.
A systematic study has been done on the structural and electronic properties of carbon, boron nitride and aluminum nitride nanotubes with structure consisting of periodically distributed tetragonal (T ≡A2X2), hexagonal (H ≡A3X3) and dodecagonal (D ≡A6X6) (AX=C2, BN, AlN) cycles. The method has been performed using first-principles calculations based on density functional theory (DFT). The optimized lattice parameters, density of state (DOS) curves and band structure of THD-NTs are obtained for (3, 0) and (0, 2) types. Our calculation results indicate that carbon nanotubes of these types (THD-CNTs) behave as a metallic, but the boron nitride nanotubes (THD-BNNTs) (with a band gap of around 4 eV) as well as aluminum nitride nanotubes (THD-AlNNTs) (with a band gap of around 2.6 eV) behave as an semiconductor. The inequality in number of atoms in different directions is affected on structures and diameters of nanotubes and their walls curvature.  相似文献   

6.
The hybridizations of a graphene layer by a thymine and a uracil nucleobase have been investigated by performing density functional theory (DFT) calculations. The isolated and hybrid structures have been firstly stabilized to reach the minimum energy and the electronic properties have been subsequently evaluated for the optimized structures. The structural and atomic scale parameters indicated that the tip of graphene is important in determining the properties of new hybrids. Moreover, different effects of thymine and uracil nucleobases have been identified in the hybrid structures. Quadrupole coupling constants have been evaluated to characterize the atomic scale properties, in which the most notable effects of hybridizations have been observed for the atoms close to the linking regions whereas negligible effects have been seen for other atoms.  相似文献   

7.
Density functional theory (DFT) calculations have been performed to investigate the availabilities and properties of boron nitride nanotubes (BNNTs) with quadrangular cross sections. To achieve the purposes, the original structure of a representative BNNT was individually decorated by the carbon and silicon atoms to make the C-BNNT and Si-BNNT models. The sp3 hybridizations were set for the C and Si atoms to make possible the formation of the quadrangular cross sections for the BNNTs. The optimized results indicated that the investigated models could be stabilized; however, they showed different properties. The atomic scale properties based on computations of quadrupole coupling constants (CQ) also approved different properties for the C-BNNT and Si-BNNT models. Moreover, the CQ parameters indicated that the properties of C-BNNT could be considered similar to the original BNNT; however, more discrepancies were observed for the Si-BNNT.  相似文献   

8.
We performed a computational work to investigate the properties of functionalized graphene sheets (S) by adenine (A) and guanine (G) purine nucleobases. To achieve the purpose of this work, we examined the functionalization of armchair and zigzag tips of the S model by each of the A and G purines. The results indicated that the optimized properties for the investigated hybrid structures are different depending on the tip of functionalization and the used purine nucleobase. Moreover, the atomic level properties of the investigated structures were investigated by evaluating quadrupole coupling constants (CQ) for the atoms of the optimized structures. The remarkable trend of the CQ parameters is that the changes of atomic properties are many more significant for the functionalization of the zigzag-tip by the G nucleobase, which is in agreement with the results of the optimized properties.  相似文献   

9.
吕常伟  王臣菊  顾建兵 《物理学报》2019,68(7):77102-077102
本文采用基于密度泛函理论的第一性原理平面波赝势和局域密度近似方法,优化了立方和六方氮化硼的几何结构,系统地研究了零温高压下立方和六方氮化硼的几何结构、力学、电学以及光学性质.结构与力学性质研究表明:立方氮化硼的结构更加稳定,两种结构的氮化硼均表现出一定的脆性,而六方氮化硼的热稳定性则相对较差;电学性质研究表明:立方氮化硼和六方氮化硼均为间接带隙半导体,且立方氮化硼比六方氮化硼局域性更强;光学性质结果显示:立方氮化硼和六方氮化硼对入射光的通过性都很好,在高能区立方氮化硼对入射光的表现更加敏感.此外,还研究了高温高压下立方氮化硼的热力学性质,并得到其热膨胀系数、热容、德拜温度和格林艾森系数随温度和压力的变化关系.本文的理论研究阐述了高压下立方氮化硼和六方氮化硼的相关性质,为今后的实验研究提供了比较可靠的理论依据.  相似文献   

10.
Structures of h-BN/graphene with holes where atoms at the edges are bonded to each other by sp2 hybridized C–B and C–N bonds and form continuous junctions from layer to layer with topological defects inside holes have been considered. Their formation, as well as the moiré-type stable atomic structure of such compounds (with different rotation angles of graphene with respect to the hexagonal boron nitride monolayer) with closed hexagonal holes in the AA centers of packing of the moiré superlattice, has been studied. The stability, as well as the electronic and mechanical properties, of such bilayer BN/graphene nanomeshes has been analyzed within electron density functional theory. It has been shown that they have semiconducting properties. Their electronic band structures and mechanical characteristics differ from the respective properties of separate monolayer nanomeshes with the same geometry and arrangement of holes.  相似文献   

11.
The stability and electronic structure of BC2N compounds are studied using first-principle calculations. The investigated structures have the topology of graphite layers with either carbon, nitrogen or boron atoms at each site. The calculations show that stabler structures are obtained by increasing the number of C-C and B-N bonds. On the other hand, less stable structures result from increasing the number of N-N and B-B bonds. The energy gap of the stablest compounds varies from 0.0 to 1.62 eV, depending on the distribution of B, C, and N atoms in the unit cell. The electronic properties of BC2N layered materials strongly depend on their atomic arrangements. The observed changes in energy gaps do not simply follow a symmetry-based argument proposed earlier.  相似文献   

12.
本文采用密度泛函理论比较了三层异质结(石墨烯/石墨烯/石墨烯,石墨烯/石墨烯/氮化硼和氮化硼/石墨烯/氮化硼)和双层异质结(石墨烯/石墨烯,石墨烯/氮化硼)的结合能和广义堆垛能的差异,以研究近邻层的影响. 由于近邻层的影响,相邻层结合能会有从-2.3%到22.55%的变化,但层间距的变化很小. 此外近邻层也会影响相邻层的广义堆垛能,变化值从-2%到10%,具体的变化值依赖于相邻层的性质.  相似文献   

13.
We have investigated, using first-principles calculations, the role of a substitutional carbon atom on the electronic properties of boron nitride monolayers, nanotubes, and nanocones. It is shown that electron states in the energy-gap are independent of the curvature, being the same for the monolayer, for the cone and for the tube. It is also found, that the presence of carbon in the boron nitride compounds induces a spin polarization, with magnetic moment of 1.0 μB, which does not depend on the curvature.  相似文献   

14.
采用基于密度泛函理论的第一性原理计算方法, 研究了氮化硼纳米管六元环中心吸附5d过渡金属原子后体系的几何结构, 电子结构和磁性性质. 研究发现, 吸附原子向一个氮原子或硼原子偏移; 吸附体系在费米能级附近出现明显的杂质能级; 各个体系的总磁矩随原子序数出现规律性变化, 局域磁矩主要分布在吸附原子上.  相似文献   

15.
We have synthesized boron carbon nitride thin films by radio frequency magnetron sputtering. The films structure and composition were characterized by X-ray diffraction, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The results indicate that the three elements of B, C, N are chemically bonded with each other and atomic-level hybrids have been formed in the films. The boron carbon nitride films prepared in the present experiment possess a disordered structure. The influence of PN2/PN2+Ar, total pressure and substrate bias voltage on the composition of boron carbon nitride films is investigated. The atomic fraction of C atoms increases and the fractions of B, N decrease with the decrease of PN2/PN2+Ar from 75% to 0%. There is an optimum total pressure. That is to say, the atomic fractions of B, N reach a maximum and the fraction of C atoms reaches a minimum at the total pressure of 1.3 Pa. The boron carbon nitride films exhibit lower C content and higher B, N contents at lower bias voltages. And the boron carbon nitride films show higher C content and lower B, N contents at higher bias voltages.  相似文献   

16.
Hexagonal and cubic boron nitride films are deposited by pulsed laser ablation from a boron nitride and a boron target using a KrF excimer laser. Hexagonal films are deposited in nitrogen as background gas or with nitrogen/argon ion bombardment at ion-to-arriving-target-atom (I/A) ratios at the substrate below 0.5. Nucleation of the cubic phase takes place exclusively with ion bombardment at I/A ratios above 1.0, which may be reduced down to 0.6 after the completion of the nucleation process. The influence of the parameters of the laser and ion beams on the properties of the hexagonal films are presented. The Vickers microhardness and the intrinsic stress of those films vary in wide ranges of 5 to 25 GPa and 1 to 16 GPa, respectively. Pulsed laser deposited hexagonal boron nitride films show good adhesion to silicon and stainless steel if they are deposited at I/A ratios below 0.5, and can be used as intermediate layers for improving the adhesion of cubic boron nitride films. So far, 0.5 7m thick, nearly phase-pure cubic boron nitride films with good adhesion have been deposited. The microstructural, mechanical, and optical properties of those layer systems are presented and discussed.  相似文献   

17.
The electrical properties and NMR parameters of the pristine and Ga-doped structures of two representative (8, 0) zigzag and (4, 4) armchair of boron phosphide nanotubes (BPNTs) have been investigated. The structural geometries of above nanotubes have been allowed to relax by optimization and then the isotropic and anisotropic chemical shielding parameters (CSI and CSA) of 11B and 31P have been calculated based on DFT theory. The results reveal that the influence of Ga-doping was more significant on the geometries of the zigzag model than the armchair one. The difference of band gap energies between the pristine and Ga-doped armchair BPNTs was larger than the zigzag model. Significant differences of NMR parameters of those nuclei directly contributed to the Ga-doping atoms have been observed.  相似文献   

18.
Two models of (10, 0) boron nitride nanotubes (BNNTs), perfect and Ammonia-attached, were studied in order to evaluate the influence of NH3-attaching on the B-11 and N-15 nuclear magnetic resonance in the (10, 0) boron-nitride nanotube (BNNT) for the first time. At first, based on density functional theory (DFT) each of the structures was optimized using B3LYP/6-31G (d) model chemistry. At the next step, the chemical-shielding (CS) tensors were calculated using the B3LYP/6-31G (d, p) level of theory in both of the relaxed forms and were converted to experimentally measurable nuclear magnetic resonance (NMR) parameters, i.e. chemical-shielding isotropic (CSI) and chemical-shielding anisotropic (CSA). Our calculation revealed that in the NH3-attached BNNT (the most stable model) the B atom chemically bonded to the NH3 molecule has the largest chemical-shielding isotropic (CSI) and the smallest chemical-shielding anisotropic (CSA) values among the other boron nuclei. Additionally, the NMR parameters of those nuclei directly bonded to the boron dramatically change while those of the other B nuclei remain almost unchanged.  相似文献   

19.
Currently, wafers of aluminum nitride cut from bulk aluminum nitride crystals (AlN) grown by sublimation are considered promising substrates for obtaining light-emitting diode structures based on nitrides of the third group. In this study, the structural characteristics and electrical properties of AlN, as a prospective substrate material for light-emitting diode heterostructures based on AlGaN/GaN, were investigated. The substrate working surface ((0001) plane, Al-polar) was specifically prepared for epitaxial growth using chemical-mechanical polishing. The surface roughness (“epi-ready”), as estimated by atomic force microscopy, did not exceed 0.3 nm.  相似文献   

20.
张召富  耿朝晖  王鹏  胡耀乔  郑宇斐  周铁戈 《物理学报》2013,62(24):246301-246301
采用基于密度泛函理论的第一性原理计算方法,研究了当氮化硼纳米管(BNNT)中的B原子和N原子被5d过渡金属原子(Lu,Hf,Ta,W,Re,Os,Ir,Pt,Au,Hg)取代时BNNT的几何结构、电子结构和磁性性质. 作为对比,给出了理想BNNT,B缺陷体系(VB)和N缺陷体系(VN)的相应结果. 研究发现:5d原子取代B(B5d)时体系的局域对称性接近于C3v,但是取代N(N5d)时体系的局域对称性偏离C3v对称性较大;利用相同的5d原子进行掺杂时,B5d的成键能比N5d的成键能大;对于B5d或者N5d,其成键能基本上随着5d原子的原子序数的增大而降低;掺杂体系中出现了明显的杂质能级,给出了态密度等结果;不同掺杂情况的磁矩不同,取代B 时体系的总磁矩呈现出较强的规律性. 利用对称性和分子轨道理论解释了5d原子取代B时杂质能级的产生和磁性的变化规律. 关键词: 第一性原理计算 5d过渡金属原子 氮化硼纳米管 密度泛函理论  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号