首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ab-initio calculations based on norm-conserving pseudopotentials and density functional theory (DFT) have been performed to investigate the structural, elastic, thermodynamic, and lattice dynamical (phonon dispersion curves) properties of BaX in rock-salt (B1) and CsCl (B2) structures. The results support the experimental and theoretical data in the existing literature. Findings are also presented for the temperature-dependent behaviors of some thermodynamic properties such as entropy, heat capacity, internal energy, and free energy for the same compounds in the B1 phase.  相似文献   

2.
First principles calculations were performed in the framework of the density functional theory (DFT) using the Full Potential–Linear Augment Plane Wave method (FP–LAPW) within the generalized gradient approximation (GGA) to predict the structural, electronic, elastic and thermal properties of NiTi2 intermetallic compound. By using the Wien2k all-electron code, calculations of the ground state and electronic properties such as lattice constants, bulk modulus, presure derivative of bulk modulus, total energies and density of states were also included. The elastic constants and mechanical properties such as Poisson’s ratio, Young’s modulus and shear modulus are estimated from the calculated elastic constants of the single crystal. Through the quasi-harmonic Debye model, the preasure and temperature dependences of the linear expansion coefficient, bulk modulus and heat capacity have been investigated. Finally, the Debye temperature has been estimated from the average sound velocity according to the predicted polycrystal bulk properties and from the single crystal elastic constants.  相似文献   

3.
ABSTRACT

The structural, electronic, elastic and thermodynamic properties of LuX (X = N, Bi and Sb) based on rare earth into phases, Rocksalt (B1) and CsCl (B2) have been investigated using full-potential linearized muffin-tin orbital method (FP-LMTO) within density functional theory. Local density approximation (LDA) for exchange-correlation potential and local spin density approximation (LSDA) are employed. The structural parameters as lattice parameters a0, bulk modulus B, its pressure derivate B’ and cut-off energy (Ec) within LDA and LSDA are presented. The elastic constants were derived from the stress–strain relation at 0 K. The thermodynamic properties for LuX using the quasi-harmonic Debye model are studied. The temperature and pressure variation of volume, bulk modulus, thermal expansion coefficient, heat capacities, Debye temperature and Gibbs free energy at different pressures (0–50 GPa) and temperatures (0–1600 K) are predicted. The calculated results are in accordance with other data.  相似文献   

4.
H. Koc  A. Yildirim  E. Deligoz 《中国物理 B》2012,21(9):97102-097102
The structural, elastic, electronic, optical, and vibrational properties of cubic PdGa compound are investigated using the norm-conserving pseudopotentials within the local density approximation (LDA) in the framework of the density functional theory. The calculated lattice constant has been compared with the experimental value and has been found to be in good agreement with experimental data. The obtained electronic band structures show that PdGa compound has no band gap. The second-order elastic constants have been calculated, and the other related quantities such as the Young’s modulus, shear modulus, Poisson’s ratio, anisotropy factor, sound velocities, and Debye temperature have also been estimated. Our calculated results of elastic constants show that this compound is mechanically stable. Furthermore, the real and imaginary parts of the dielectric function and the optical constants such as the electron energy-loss function, the optical dielectric constant and the effective number of electrons per unit cell are calculated and presented in the study. The phonon dispersion curves are also derived using the direct method.  相似文献   

5.
The structural, mechanical, electronic and optical properties of orthorhombic PtSi and PtGe were investigated using norm-conserving pseudopotentials within the local density approximation in the frame of density functional theory. The calculated lattice parameters and bulk modulus for PtSi and PtGe have been compared with the experimental and theoretical values. The second-order elastic constants were calculated, and the other related quantities such as the Young's modulus, shear modulus, Poisson's ratio, anisotropy factor, sound velocities and Debye temperature have also been estimated. The linear photon-energy dependent dielectric functions and some optical properties such as the energy-loss function, the effective number of valance electrons and the effective optical dielectric constant were calculated. Our structural estimation and some other results are in agreement with the available experimental and theoretical data.  相似文献   

6.
The structural,elastic,electronic,optical,and vibrational properties of the orthorhombic Pd2Ga compound are investigated using the norm-conserving pseudopotentials within the local density approximation in the frame of density functional theory.The calculated lattice parameters have been compared with the experimental values and found to be in good agreement with these results.The second-order elastic constants and the other relevant quantities,such as the Young’s modulus,shear modulus,Poisson’s ratio,anisotropy factor,sound velocity,and Debye temperature,have been calculated.It is shown that this compound is mechanically stable after analysing the calculated elastic constants.Furthermore,the real and imaginary parts of the dielectric function and the optical constants,such as the optical dielectric constant and the effective number of electrons per unit cell,are calculated and presented.The phonon dispersion curves are derived using the direct method.The present results demonstrate that this compound is dynamically stable.  相似文献   

7.
Yildirim A  Koc H  Deligoz E 《中国物理 B》2012,21(3):37101-037101
The structural, elastic, electronic, optical, and vibrational properties of the orthorhombic Pd2Ga compound are investigated using the norm-conserving pseudopotentials within the local density approximation in the frame of density functional theory. The calculated lattice parameters have been compared with the experimental values and found to be in good agreement with these results. The second-order elastic constants and the other relevant quantities, such as the Young's modulus, shear modulus, Poisson's ratio, anisotropy factor, sound velocity, and Debye temperature, have been calculated. It is shown that this compound is mechanically stable after analysing the calculated elastic constants. Furthermore, the real and imaginary parts of the dielectric function and the optical constants, such as the optical dielectric constant and the effective number of electrons per unit cell, are calculated and presented. The phonon dispersion curves are derived using the direct method. The present results demonstrate that this compound is dynamically stable.  相似文献   

8.
颜小珍  邝小渝  毛爱杰  匡芳光  王振华  盛晓伟 《物理学报》2013,62(10):107402-107402
采用密度泛函理论中的赝势平面波方法研究了高压下超导材料 ErNi2B2C 的弹性性质、电子结构和热力学性质.分析表明, 弹性常数、体弹模量、剪切模量、杨氏模量和弹性各向异性因子的外压力效应明显. 电子态密度(DOS)的计算结果显示, 在费米能级(EF)处的 DOS 峰随外界压强的增大显著降低, 由于 ErNi2B2C 相对较高的超导温度(Tc)起因于EF处的 DOS 峰, 因此推测压强增大可能会降低 ErNi2B2C 的 Tc.类似的现象在超导材料 MgB2和 SrAlSi 中已被发现.此外, 基于准谐德拜模型, 对 ErNi2B2C 在高温高压下的热力学性质的研究表明, 在一定范围内, 温度和压强将对其热膨胀系数和热容产生明显的影响. 关键词: 高压 弹性性质 电子结构 热力学性质  相似文献   

9.
The structural, elastic, electronic, and thermodynamic properties of thermoelectric material Mg Ag Sb in γ, β, α phases are studied with first-principles calculations based on density functional theory. The optimized lattice constants accord well with the experimental data. According to the calculated total energy of the three phases, the phase transition order is determined from α to γ phase with cooling, which is in agreement with the experimental result. The physical properties such as elastic constants, bulk modulus, shear modulus, Young's modulus, Poisson's ratio, and anisotropy factor are also discussed and analyzed, which indicates that the three structures are mechanically stable and each has a ductile feature. The Debye temperature is deduced from the elastic properties. The total density of states(TDOS) and partial density of states(PDOS) of the three phases are investigated. The TDOS results show that the γ phase is most stable with a pseudogap near the Fermi level, and the PDOS analysis indicates that the conduction band of the three phases is composed mostly of Mg-3s,Ag-4d, and Sb-5p. In addition, the changes of the free energy, entropy, specific heat, thermal expansion of γ-MgAgSb with temperature are obtained successfully. The obtained results above are important parameters for further experimental and theoretical tuning of doped MgAgSb as a thermoelectric material at high temperature.  相似文献   

10.
The crystal structural, electronic, elastic and the thermodynamic properties of RCd are investigated by using the first-principles plane-wave pseudopotential density function theory within the generalized gradient approximation (GGA). The calculated equilibrium lattice parameters for RCd are in good agreement with the available experimental data. Furthermore, the optical properties, namely the dielectric function, refractive index and electron energy loss are reported for radiation up to 30 eV. Finally, the elastic properties, the bulk modulus and the Debye temperature of RCd are given for reference.  相似文献   

11.
We have performed first-principles calculations to investigate the structural, lattice dynamics and thermodynamic properties of the zincblende thallium-V compounds: TlAs, TlP and TlN. The ground-state parameters, such as the lattice constant and the bulk modulus, as well as the electronic structure are calculated using the plane wave pseudopotential approach to density functional theory within the local density approximation. Phonon dispersion spectra are derived from the linear response to density functional theory. The present ab initio results for phonon dispersion are compared and contrasted with the common III–V materials. Thermodynamical properties, calculated using quasiharmonic approximations, are also reported.  相似文献   

12.
Using the first-principles full-potential linear muffin-tin orbital method within the local density approximation, we have studied the structural, elastic, thermodynamic, and electronic properties of the ideal-cubic perovskite BiGaO3. It is found that this compound has an indirect band gap. The valence band maximum (VBM) is located at Γ-point, whereas the conduction band minimum (CBM) is located at X-point. The pressure and volume dependences of the energy band gaps have been calculated. The elastic constants at equilibrium are also determined. We derived the bulk and shear moduli, Young’s modulus, and Poisson’s ratio. The thermodynamic properties are predicted through the quasi-harmonic Debye model, in which the lattice vibrations are taken into account. The variation of the bulk modulus, heat capacities, and Debye temperature with pressure and temperature are successfully obtained.  相似文献   

13.
We investigate the elastic properties, lattice dynamical, thermal equation of state and thermodynamic properties of bcc phase W under high pressure using density functional theory. The calculated high-pressure elastic constants of bcc phase W agree well with experimental and theoretical data. Under compression, the phonon dispersion curves of bcc phase W do not show any anomaly or instability. Our calculated zero-pressure phonon dispersion curves are in excellent agreement with experiments. Within the quasiharmonic approximation, we predict the thermal equation of state and other properties including the thermal expansion coefficient, adiabatic bulk modulus, specific heat at constant volume and entropy.  相似文献   

14.
The elastic, electronic and thermodynamic properties of fluoro-perovskite KZnF3 have been calculated using the full-potential linearized augmented plane wave (FP-LAPW) method. The exchange-correlation potential is treated with the generalized gradient approximation of Perdew-Burke-Ernzerhof (GGA-PBE). Also, we have used the Engel and Vosko GGA formalism (GGA-EV) to improve the electronic band structure calculations. The calculated structural properties are in good agreement with available experimental and theoretical data. The elastic constants C ij are calculated using the total energy variation with strain technique. The shear modulus, Young’s modulus, Poisson’s ratio and the Lamé coefficients for polycrystalline KZnF3 aggregates are estimated in the framework of the Voigt-Reuss-Hill approximations. The ductility behavior of this compound is interpreted via the calculated elastic constants C ij . Electronic and bonding properties are discussed from the calculations of band structure, density of states and electron charge density. The thermodynamic properties are predicted through the quasi-harmonic Debye model, in which the lattice vibrations are taken into account. The variation of bulk modulus, lattice constant, heat capacities and the Debye temperature with pressure and temperature are successfully obtained.  相似文献   

15.
First-principles calculations, which are based on the plane-wave pseudopotential approach to the density functional theory and the density functional perturbation theory within the local density approximation, have been performed to investigate the structural, lattice dynamical and thermodynamic properties of zinc blende (B3) structure beryllium chalcogenides: BeS, BeSe and BeTe. The results of ground-state parameters and phonon dispersion are compared and contrasted with the experimental and theoretical data of previous literature. The phonon frequencies at the zone-center are analyzed. We also used the phonon density of states and quasiharmonic approximation to calculate and predict some thermodynamic properties such as entropy, heat capacity, internal energy and free energy of the B3 phase beryllium chalcogenides.  相似文献   

16.
The structural, elastic and thermodynamic properties of thorium tetraboride (ThB4) have been investigated by using first-principles plane-wave pseudopotential density functional theory with generalized gradient approximation. The behaviors of structural parameters under 0-70 GPa hydrostatic pressure are studied by means of Broyden, Fletcher, Goldfarb, and Shanno (BFGS) geometry optimization scheme. By using the stress-strain method, single crystal elastic constants are calculated to test the mechanical stability of the crystal structure and to determine mechanical properties such as bulk modulus at each pressure. However, in order to study the thermodynamic properties of ThB4, the quasi-harmonic Debye model is used. Then, the dependencies of bulk modulus, heat capacities, thermal expansions, Grüneisen parameters and Debye temperatures on the temperature and pressure are obtained in the whole pressure range 0-70 GPa and temperature range 0-1500 K.  相似文献   

17.
利用基于密度泛函理论的第一性原理,在广义梯度近似下研究了MAX相Nb2SnC和Nb2SnN的力学、晶格动力学、电子以及热力学性质.通过弹性常数和声子的计算,研究了Nb2SnC和Nb2SnN两种结构的力学稳定性和动力学稳定性;通过对Nb2SnC和Nb2SnN的力学性质计算,证明了它们均具有较高的体积模量和剪切性,并且说明了Nb2SnC和Nb2SnN是具有弹性各向异性的韧性材料.此外,通过计算电子能带结构和态密度,研究了Nb2SnC和Nb2SnN的电子性质和成键性质,结果表明,两个化合物均具有金属导电性和较强的共价键,而且Nb2SnN比Nb2SnC具有更强的金属导电性.最后利用声子色散曲线预测了热容、自由能、焓和熵等热力学性质,结果标明,计算出的熵、焓和自由能值变化符合热力学第三定律.  相似文献   

18.
First-principle simulations have been applied to investigate the effect of copper(Cu) or aluminum(Al) content on the ductility of Al_3Ti,AlTi,AlCu,and AlTiCu_2 alloys.The mechanical stable and elastic properties of Al-based intermetallic compounds are researched by density functional theory with the generalized gradient approximation(DFT-GGA).The calculated lattice constants are in conformity with the previous experimental and theoretical data.The deduced elastic constants show that the investigated Al_3Ti,AlTi,AlCu,and AlTiCu_2 structures are mechanically stable.Shear modulus,Young's modulus,Poisson's ratio,and the ratio B/G have also been figured out by using reckoned elastic constants.A further analysis of Young's modulus and Poisson's ratio reveals that the third added element copper content has significant effects on the Al-Ti-based ICs ductile character.  相似文献   

19.
The density functional theory (DFT) calculations of structural, elastic, electronic and optical properties of the cubic antiperovskite AsNMg3 has been reported using the pseudo-potential plane wave method (PP-PW) within the generalized gradient approximation (GGA). The equilibrium lattice, bulk modulus and its pressure derivative have been determined. The elastic constants and their pressure dependence are calculated using the static finite strain technique. We derived the bulk and shear moduli, Young's modulus and Poisson's ratio for ideal polycrystalline AsNMg3 aggregate. We estimated the Debye temperature of AsNMg3 from the average sound velocity. This is the first quantitative theoretical prediction of the elastic properties of AsNMg3 compound, and it still awaits experimental confirmation. Band structure, density of states and pressure coefficients of energy gaps are also given. The fundamental band gap (Γ-Γ) initially increases up to 4 GPa and then decreases as a function of pressure. Furthermore, the dielectric function, optical reflectivity, refractive index, extinction coefficient, and electron energy loss are calculated for radiation up to 30 eV. The all results are compared with the available theoretical and experimental data.  相似文献   

20.
Recent discoveries of the novel properties of arsenides prompt us to theoretically predict the tetragonal AsTiZr ternary compound under pressure, in order to exploit new functional materials. The structure, elastic and thermodynamic properties of AsTiZr have been investigated under various pressures, based on density functional theory (DFT). For the sake of consistency, the approach of the generalized gradient approximation (GGA) of Perdew–Burke–Ernzerhof (PBE) was used. The calculated structural data at zero pressure are in good agreement with previous report. The dependence of relative changes of lattice parameters (a0 and c0) and volume V0, elastic constants, bulk, shear and Young's modulus, and Debye temperature on pressure has been investigated. The thermodynamic properties like heat capacity C, enthalpy E, free energy F and entropy S with pressure are successfully obtained and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号