首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nanosized MnFe2O4 ferrites were synthesized by a simple method, which is based on the solid state ball-milling and calcinations of nitrate precursors and citric acid. The samples were characterized by using different methods. The results indicate that the products mainly consist of MnFe2O4 nanoparticles. The effect of different annealing temperatures on particle sizes and crystallinity of the samples was also studied. By increasing the particle size, the coercivity and magnetization of the samples increase. The increase of magnetization by increasing the crystallite size could be attributed to the lower surface spin canting and surface spin disorder of the larger magnetic nanoparticles. Our analysis of ac susceptibility measurements shows that the interparticle magnetic interaction leads to the superspin glass-like behavior in these nanoparticle samples.  相似文献   

2.
The effects of grinding on interparticle magnetic interactions for an ensemble of agglomerated MnFe2O4 nanoparticles have been studied. Structural analyses showed that by grinding the samples, a small variation in size of crystallites and lattice strain will occur. ac Magnetic susceptibility measurements under different conditions and spin dynamics analysis suggest that freezing temperature is frequency dependent and it is in good agreement with critical slowing down model. This is an indication that these nanoparticles have superspin glass behavior. The estimated and τ0 parameters using critical slowing down model show that by increasing the grinding time the interaction between nanoparticles decreases. ac Susceptibility measurements in cooling and heating process show a thermal hysteresis. The thermal hysteresis decreased by increasing the grinding time. Also, the thermal hysteresis is frequency dependent and it increased as frequency decreased. These results showed that interparticle interactions such as dipole-dipole and exchange interactions between nanoparticles become weaker by grinding.  相似文献   

3.
In this work zinc ferrite (ZnFe2O4) nanoparticles have been prepared by sol-gel method in two different media, one acidic and another one basic and then annealed at different temperatures from 350 to 800 °C. XRD investigations show that both samples have a single phase spinel structure. Mean crystallite sizes of the samples were calculated, using Scherrer’s formula, which are 13 and 16 nm for the samples prepared in acidic and basic media, respectively. The variation of cation distribution in the samples was estimated by the ratio of (2 2 0) and (2 2 2) intensity diffraction peaks and the results show that as-prepared nanoparticles have different ionic distributions in comparison with that of bulk zinc ferrite. Also the results show that by increasing annealing temperature the ionic distribution of the zinc ferrite nanoparticles tends to that of bulk sample. The magnetic properties of the samples were studied by VSM and the results show that zinc ferrite nanoparticles have a ferrimagnetic behavior. Also the morphology of the powders was examined by TEM.  相似文献   

4.
CoFe2−xGdxO4 (x=0-0.25) nanoparticles were synthesized via a simple hydrothermal process at 200 °C for 16 h without the assistance of surfactant. The as-synthesized powders were characterized by X-ray diffraction, transmission electron microscopy, and a vibrating sample magnetometer. The X-ray diffraction results showed that the as-synthesized powders were in the pure phase with a doping amount of ≤0.25, and the peaks could be readily indexed to the cubic spinel cobalt ferrite. Transmission electron microscopy and high resolution transmission electron microscopy observations revealed that the gadolinium-doped cobalt ferrite nanoparticles were single crystal, roughly spherical, uniformly distributed, and not highly agglomerated. The room temperature magnetic field versus magnetization measurements confirmed a strong influence of gadolinium doping on the saturation magnetization and coercivity due to large lattice distortion and grain growth of small particles.  相似文献   

5.
A Fe3O4 silicon oil-based ferrofluid (FF) was prepared and the viscosity properties of the FFs were investigated by a rotating viscometer and a torsional oscillation cup viscometer, respectively. Experimental results show that the viscosity of the FFs decreases with increasing temperature, and increases with increasing magnetic field intensity due to the existence of the magnetic particles. The hysteresis curve of the viscosity–magnetic field shows that the formation and destruction of chain-like or drop-like structures has obvious effect on the viscosity of the FFs. When the field is relatively strong, the viscosity at the decreasing stage is higher than that at the increasing stage. In contrast, when the field is relatively weak, the viscosity at the decreasing stage is slightly lower than that at the increasing stage. In addition, the relation between viscosity of the FFs and time under the magnetic field shows that time is an effective factor in the evolution of the magnetically induced structures.  相似文献   

6.
Mn-ferrite nanoparticles having diameter in the range 17-45 nm were synthesized by modified co-precipitation method using metal nitrate solutions. Different concentrations of NaOH were found to affect the growth of particle size. Néel temperature (TN) was found to increase with increasing particle size. The obtained Néel temperature was higher than that of the bulk. The shift in the Néel temperature is described by the finite size-scaling theory [TN(d)−TN(bulk)]/TN(bulk)=(d/d0)−1/v, where d is particle size, v=0.6±0.1 and d0=1.7±0.1 nm.  相似文献   

7.
Nanosized manganese oxide particles were prepared by the so-called polyol process. The average diameter of the particles was controlled by the growth time. X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photon spectroscopy (XPS) show that the particles are well crystallized, pure, stoichiometric Mn3O4 single crystals of uniform size ranging from about 5 to 12 nm. The variation of their dc-magnetization, M, as a function of the magnetic field, H, and temperature, T, clearly corresponds to ferromagnetic ordering at low temperature, with a Curie temperature slightly higher than 40 K. The evidence for superparamagnetism in these particles, due to their very small size, has been discussed in the light of their M(H) and M(T) for zero-field-cooled (ZFC) and field-cooled (FC) plots.  相似文献   

8.
The structural, microstructural and magnetic properties of nanoferrite NiFe2O4 (NF), CoFe2O4 (CF) and MnFe2O4 (MF) thin films have been studied. The coating solution of these ferrite films was prepared by a chemical synthesis route called sol-gel combined metallo-organic decomposition method. The solution was coated on Si substrate by spin coating and annealed at 700 °C for 3 h. X-ray diffraction pattern has been used to analyze the phase structure and lattice parameters. The scanning electron microscopy (SEM) and atomic force microscopy (AFM) have been used to show the nanostructural behavior of these ferrites. The values of average grain's size from SEM are 44, 60 and 74 nm, and from AFM are 46, 61 and 75 nm, respectively, measured for NF, CF and MF ferrites. At room temperature, the values of saturation magnetization, Ms∼50.60, 33.52 and 5.40 emu/cc, and remanent magnetization, Mr∼14.33, 15.50 and 1.10 emu/cc, respectively, are observed for NF, CF and MF. At low temperature measurements of 10 K, the anisotropy of ferromagnetism is observed in these ferrite films. The superparamagnetic/paramagnetic behavior is also confirmed by χ′(T) curves of AC susceptibility by applying DC magnetizing field of 3 Oe. The temperature dependent magnetization measurements show the magnetic phase transition temperature.  相似文献   

9.
采用溶胶-凝胶自动燃烧方法合成了镍铁-钯复合材料NiFe2O4-Pd的磁性纳米颗粒. 样品在800 ℃烧结6 h生成结晶相. X射线衍射证实样品呈尖晶石结构. 利用场发射扫描电子显微镜研究结构形态和纳米颗粒的大小. 饱和磁化强度在100和300 K时,随着钯含量增加达5%降低,但加入10%Pd时磁化强度突然上升.  相似文献   

10.
CoFe2O4自形成磁性液体场致结构化对磁化的影响   总被引:1,自引:0,他引:1  
黄彦  李建  李凤 《化学物理学报》2005,18(4):585-588
因为磁性液体的磁性微粒有着很强的相互作用,Langevin顺磁理论不能很好描述磁性液体的磁化强度随外磁场的变化.研究认为影响磁化的主要因素是磁性液体内微粒整体的结构化,其结构的形成储存了部分磁化功,直接或间接地影响了磁化.在此基础上提出“压缩”模型,修正了描述磁性液体常用的Langevin函数,得出了与实验较好符合的曲线.所提出的一个压缩后等效体积分数与外磁场强度的关系式,近似地描述了磁性液体在磁场中磁化的过程.由修正式得出了近似初始磁化率随体积分数变化关系.  相似文献   

11.
The preparation of superparamagnetic magnetite (Fe3O4) nanoparticles by electro-precipitation in ethanol is proposed. Particle average size can be set from 4.4 to 9 nm with a standard deviation around 20%. Combination of wide-angle X-ray scattering (WAXS), Electron energy loss spectroscopy (EELS) and Mössbauer spectroscopy characterizations clearly identifies the particles as magnetite single-crystals (Fe3O4).  相似文献   

12.
Magnetite nanoparticles are found to assemble into randomly dispersed loose nanoscale spheres with diameters ∼300 nm in ethylene glycol in the presence of polyethylene and a small quantity of polyethyleneimine. Modern analysis methods are employed to provide structure information of the magnetic loose spheres. The ferromagnetic saturation magnetization is ∼80.0 emu g−1, and the coercive force is 209 Oe. The microwave electromagnetic parameters are measured by a vector network analyzer. The synthesized loose spheres exhibit novel microwave properties compared with the conventional Fe3O4 nanoparticles. An additional microwave loss peak appears in the Ku band, which is attributed to the loose structure.  相似文献   

13.
CoxFe3−xO4 (0?x?0.10) nanoparticles coated with tetramethyl ammonium hydroxide as a surfactant were synthesized by a co-precipitation technique. The Fe:Co ratio was tuned up to x=0.10 by controlling the Co2+ concentration during synthesis. The mean particle size, determined by transmission electron microscopy, ranged between 15±4 and 18±4 nm. The superparamagnetic blocking temperature and the magnetocrystalline anisotropy constant of the ferrofluids, determined using ac and dc magnetic measurements, scale approximately linearly with cobalt concentration. We also find distinct differences in the optical response of different samples under an applied magnetic field. We attribute changes in field-induced optical relaxation for the x=0 and 0.05 samples to differences in the anisotropic microstructure under an applied magnetic field.  相似文献   

14.
Zn-doped nickel ferrite nanoparticles (Zn0.6Ni0.4Fe2O4) have been prepared via a surfactant, polyethylene glycol assisted hydrothermal route. X-ray powder diffractometry (XRD), Fourier transform infrared spectroscopy, transmission electron microscopy (TEM), and vibrating scanning magnetometry (VSM) were used for the structural, morphological, and magnetic characterizations of the product, respectively. TEM analysis revealed that the nanoparticles have a narrow size distribution, with average particle size of 15±1 nm, which agrees well with the XRD based estimate of 14±2 nm. The absence of saturation and remanent magnetization, and coercivity in the high temperature region of the M-H curve and non-zero magnetic moments indicate superparamagnetism of the nanoparticles with a canted spin structure. The appearance of a peak on the temperature-dependent zero-field cooling magnetization curve at ∼190 K indicates the blocking temperature of the sample.  相似文献   

15.
Co1−xNix/2Srx/2Fe2O4 (x=0–0.5 in steps of 0.1) ferrite nanoparticles have been synthesized at room temperature, without calcination, using a reverse micelle process. The site preference was determined by Mössbauer spectroscopy at 300 K. The hyperfine parameters were obtained, for the whole series of solid solutions. For the X≤0.20 samples, the spectra were fitted with two discrete sextets and for the X>0.20 samples, a magnetic hyperfine field distribution and a doublet were also imposed in the fit procedure. Hysteresis loops were measured using a superconducting quantum interference device magnetometer at 2 K and 300 K. The results indicate that the relative decrease in saturation magnetization of nanoparticles compared to the submicron particles could be attributed to a surface spin termination and disorder. Magnetic dynamics of the nanoparticles was studied by the measurement of ac magnetic susceptibility versus temperature at different frequencies and it is found that the results are well described by the Vogel–Fulcher model.  相似文献   

16.
The DC conductivity and the relative magnetic permeability have been measured as functions of temperature for five powder samples of nanoparticle ferrites (NixZn1−xFe2O4; x=0, 0.25, 0.5, 0.75 and 1), a pure polypyrrole (PPy) powder sample and many composite samples prepared by mixing different ratios of the ferrites to PPy. By comparing the results it is found that there is an obvious increase in DC conductivity of the ferrite/PPy composite samples compared to the corresponding pure ferrite samples, whereas compared to the pure PPy sample there is a decrease in DC conductivity. On the contrary, the magnetic permeability of the composites is higher than that of the pure PPy sample and lower than that of the pure ferrite samples as was expected.  相似文献   

17.
The physical properties of Tb3+ ions substitution at A-site are investigated in the layered manganite La1.2Sr1.8Mn2O7. A series of La1.2−xTbxSr1.8Mn2O7 (x=0, 0.05, 0.15, and 0.20) shows that doping with a Tb ion of smaller radius in La1.2Sr1.8Mn2O7 caused diffraction peaks to shift to high angle. Some samples have an impure diffraction at about 30°, but all samples form single-phase. Samples can be well indexed on a Sr3Ti2O7-type tetragonal structure with the space group I4/mmm. According to the M-T curves, when x≤0.05, the series of samples shows ferromagnetism at low temperatures. With increasing temperature, they have two magnetic transitions at different temperatures. When x≥0.15, the magnetizations dramatically decrease. The ρ–T curves of samples show the metal–insulator transition for x=0, 0.05, and the maximum MR values in magnetic field 5 T are 74% at about 73 K and 94% at about 86 K. When x≥0.15, the samples remain in the insulator state in the whole observed temperature range, and the maximum MR values of 86% and 69% appeared at 74 K and 42 K.  相似文献   

18.
We present an investigation of properties of CoxZn1−xFe2O4 (x=0.0-1.0) nanoparticles synthesized by a polyethylene glycol (PEG)-assisted hydrothermal route. X-ray powder diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and vibrating scanning magnetometry (VSM) were used to characterize the structural, morphological and magnetic properties. The particle size obtained from TEM and XRD are consistent with each other. It was observed that the lattice constant for each composition decreases with increasing Co substitution and follows Vegard's law. Magnetization measurements show that while the materials with high Zn substitution are superparamagnetic at room temperature, they are ferromagnetic at temperatures lower than the blocking temperature. The materials with less Zn substitution are ferromagnetic below room temperature. Magnetizations and the coercivities of the samples decrease with the Zn substitution. The resultant overall magnetic behavior of the superparamagnetic samples are found to be considerably different than that of conventional superparamagnetic systems due to the antiferromagnetic interactions both in intra- and inter-cluster spins, and size (effective moment) distribution of the particles.  相似文献   

19.
Magnetic properties of Li2O–MnO2–CaO–P2O5–SiO2 (LMCPS) glasses doped with various amounts of Fe2O3 were investigated. There is a dramatic change in the magnetic property of pristine LMCPS after the addition of Fe2O3 and crystallized at 850 °C for 4 h. Both the electron paramagnetic resonance and magnetic susceptibility measurements showed that the glass ceramic with 4 at% Fe2O3 exhibited the coexistence of superparamagnetism and ferromagnetism at room temperature. When the Fe2O3 content was higher than 8 at%, the LMCPS glasses showed ferromagnetism behavior. The complex magnetic behavior is due to the distribution of (Li, Mn)ferrite particle sizes driven by the Fe2O3 content. The thermal induced hysteresis loss of the crystallized LMCPS glass ceramics was characterized under an alternating magnetic field. The energy dissipations of the crystallized LMCPS glass ceramics were determined by the concentration and Mn/Fe ratios of Li(Mn, Fe)ferrite phase formed in the glass ceramics.  相似文献   

20.
The mixed spinel-perovskite composites of xMnFe2O4-(1-x)BiFeO3 with x=0, 0.1, 0.2, 0.3 and 0.4 were prepared by solid state reaction method. The structure and grain size were examined by means of X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM), respectively. The XRD results showed that the composites consisted of spinel MnFe2O4 and perovskite BiFeO3 phases after being calcined at the temperature 950 °C for 2 h. The grain size ranged from 0.8 to 1 μm. Magnetization was found to increase with increasing concentration of ferrite content. The variation of dielectric constant and dielectric loss with frequency showed dispersion in the low frequency range. Magnetocapacitance was also observed in the prepared composites, which may be the sign of magnetoelectric coupling in the synthesized composites at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号