首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using Thermal Programmed Desorption (TPD), Low Energy Electron Diffraction (LEED) and Auger Electron Spectroscopy (AES) we have studied the adsorption of hydrogen-containing molecules (H2, C2H2, C2H4, C2H6) and oxygen-containing molecules (CO and NO) on two vicinal planes of the Re(0001) surface. The two surfaces are designated thus: ReS ¦14(0001)(101̄1)¦, ReS |6(0001)(167̄1) | . The structural defects have little effect on the adsorption of hydrogen and the hydrocarbons. They are more influential in the case of the oxygen-containing molecules. This is particularly true for CO; on the kink sites the CO molecules can completely dissociate whereas only a partial dissociation is possible on the steps. These results should be viewed in relation to the strong bond energy between carbon and oxygen in a CO molecule of 256 kcal/mole and the great affinity of oxygen for rhenium; ERe?O = 127 kcal/mole.  相似文献   

2.
D.R. Mullins 《Surface science》2006,600(13):2718-2725
A dysprosium oxide thin film was deposited on Ru(0 0 0 1) by vapor depositing Dy in 2 × 10−7 torr O2 while the Ru was at 700 K. The film was ca. 5 nm thick and produced a p(1.4 × 1.4) LEED pattern relative to the Ru(0 0 0 1) substrate. The adsorption and reaction of CO and C2H4 adsorbed on Rh supported on the Dy2O3 film were studied by TPD and SXPS. The CO initially reacted with loosely bound oxygen in the substrate to produce CO2. After the loosely bound oxygen was removed, the CO adsorbed non-dissociatively in a manner similar to what is seen on Rh(1 1 1). C2H4 adsorbed on the Rh particles and underwent progressive dehydrogenation to produce H2 during TPD. The C from the C2H4 reacted with the O in Dy2O3 to produce CO. CO dissociation on the Rh particles could be promoted by treating the Dy2O3 with C2H4 before CO exposure.  相似文献   

3.
The effects of temperature and pressure on the formation and decomposition of C6H5C2H2O2 in the C6H5C2H2 + O2 reaction have been investigated at temperatures from 298 to 378 K by directly monitoring the C6H5C2H2O2 radical in the visible region by cavity ringdown spectrometry (CRDS). The rate constant for the C6H5C2H2 + O2 association and that for fragmentation of C6H5C2H2O2 were found to be k1 (C6H5C2H2 + O2 → C6H5C2H2O2) = (3.20 ± 1.19) × 1011 exp(+760/T) cm3 mol−1 s−1 and k2 (C6H5C2H2 O2 → C6H5CHO + HCO) = (1.68 ± 0.13) × 104 s−1, respectively. Additional kinetic measurements by pulsed laser photolysis/mass spectrometry show that C6H5CHO was produced in the C6H5C2H2 + O2 reaction as predicted and the formation of C6H5CHO from the decomposition of C6H5C2H2O2 is temperature-independent, consistent with the CRDS experimental data.  相似文献   

4.
Electron excited carbon KVV Auger spectra of CO, C2H4, C2N2 and C6H6 adsorbed on Pt(111) are compared. By estimating the effective Coulomb interaction between the final-state holes it is possible to associate some features with transitions observed in free molecule spectra, but others must involve at least one electron with energy within the conduction band of the metal. Such “cross-transitions” are associated with strong 2π* character of filled states in the presence of a core hole in molecules such as CO.  相似文献   

5.
The kinetics of reactions on the C7H8 surface were studied with state-of-the-art ab initio transition state theory (TST) and master equation methodologies. A priori predictions of the capture rate for C6H5 + CH3 and for C7H7 + H are obtained from direct variable reaction coordinate TST simulations. These simulations employ small basis set CASPT2 interaction energies coupled with one-dimensional reaction path corrections based on higher level simulations for related reactions. For the C7H7 + H reaction, predictions are obtained for both the total rate and for the branching between toluene, o-isotoluene and p-isotoluene. A mapping of the low energy pathways for isomerization from these three C7H8 isomers identifies a number of processes with barriers at or below the dissociation threshold. Nevertheless, at combustion temperatures the dissociation rates are predicted to exceed the isomerization rates, and it is reasonable to treat the kinetics of each isomer as a simple single well association/dissociation equilibrium. Master equation simulations yield predictions for the temperature and pressure dependence of each of the recombination and dissociation processes, as well as for the C7H7 + H → C6H5 + CH3 bimolecular reaction. These simulations implement collisional energy transfer probabilities based on the work of Luther and co-workers. The theoretical predictions are found to be in satisfactory agreement with the available experimental data for the photodissociation of toluene, the temperature and pressure dependent dissociation of toluene, and the reaction of benzyl radical with H. For the C6H5 + CH3 recombination, the theoretical predictions exceed the experimental measurements of Lin and coworkers by a factor of 2 or more for all temperatures.  相似文献   

6.
Dissociation of molecular hydrogen (H2) is extensively studied to understand the mechanism of hydrogenation reactions. In this study, H2 dissociation by Au1-doped closed-shell titanium oxide cluster anions AuTi3O7- and AuTi3O8- has been identified by mass spectrometry and quantum chemistry calculations. The clusters were generated by laser ablation and massselected to react with H2 in an ion trap reactor. In the reaction of AuTi3O8- with H2, the ion pair Au+-O22- rather than Au+-O2- is the active site to promote H2 dissociation. This finding is in contrast with the previous result that the lattice oxygen is usually the reactive oxygen species in H2 dissociation. The higher reactivity of the peroxide species is further supported by frontier molecular orbital analysis. This study provides new insights into gold catalysis involving H2 activation and dissociation.  相似文献   

7.
Counterflow diffusion flame experiments and modeling results are presented for a fuel mixture consisting of N2, C2H2, and C2H4 flowing against decomposition products from a solid AP pellet. The flame zone simulates the diffusion flame structure that is expected to exist between reaction products from AP crystals and a hydrocarbon binder. Quantitative species and temperature profiles have been measured for one strain rate, given by a separation of 5 mm, between the fuel exit and the AP surface. Species measured include C2H2, C2H4, N2, CN, NH, OH, CH, C2, NO, NO2, O2, CO2, H2, CO, HCl, H2O, and soot volume fraction. Temperature was measured using a combination of a thermocouple at the fuel exit and other selected locations, spontaneous Raman scattering measurements throughout the flame, NO vibrational populations, and OH rotational population distributions. The burning rate of the AP was also measured for this flame’s strain rate. The measured eighteen scalars are compared with predictions from a detailed gas-phase kinetics model consisting of 105 species and 660 reactions. Model predictions are found to be in good agreement with experiment and illustrate the type of kinetic features that may be expected to occur in propellants when AP particles burn with the decomposition products of a polymeric binder.  相似文献   

8.
Microwave spectroscopy measurements and density functional theory calculations are reported for the cyclopentadienyl cycloheptatrienyl titanium complex, C5H5TiC7H7. Rotational transition frequencies for this symmetric-top complex were measured in the 4-13 GHz range using a Flygare-Balle-type pulsed beam spectrometer. The spectroscopic constants obtained for the normal C5H548TiC7H7 isotopomer are B = 771.78907(38), DJ = 0.0000295(41), and DJK = 0.001584(73) MHz. The quadrupole hyperfine splittings for C5H547TiC7H7 were clearly observed and the measured constants are B = 771.79024(32) MHz, DJ = 0.0000395(33), DJK = 0.001646(24), and eQqaa = 8.193(40) MHz. Analysis of the experimental and theoretical rotational constants indicates that the η7-C7H7Ti and η5-C5H5Ti bond lengths in the gas phase are about 0.02 Å longer than those reported for the solid-state X-ray structure. The calculated Ti-C bond lengths are shorter for the C7H7 ligand (r(Ti-C) = 2.21 Å) than for the C5H5 ligand (r(Ti-C) = 2.34 Å), and the C7H7 H atoms are displaced 0.15 Å out of the C7 plane, toward the Ti atom.  相似文献   

9.
Microwave spectra of amine-deuterated species of 3-35Cl-aniline, C6H4CINH2, have been observed. The two amino hydrogen atoms are found to be out of the plane of the aromatic ring, and appear to be farther out of the plane when the amine group is deuterated. It has also been shown that the Htrans, c coordinate (0.300 Å) is larger than the cis one (0.281 Å).  相似文献   

10.
The interaction of O2, CO2, CO, C2H4 AND C2H4O with Ag(110) has been studied by low energy electron diffraction (LEED), temperature programmed desorption (TPD) and electron energy loss spectroscopy (EELS). For adsorbed oxygen the EELS and TPD signals are measured as a function of coverage (θ). Up to θ = 0.25 the EELS signal is proportional to coverage; above 0.25 evidence is found for dipole-dipole interaction as the EELS signal is no longer proportional to coverage. The TPD signal is not directly proportional to the oxygen coverage, which is explained by diffusion of part of the adsorbed oxygen into the bulk. Oxygen has been adsorbed both at pressures of less than 10-4 Pa in an ultrahigh vacuum chamber and at pressures up to 103 Pa in a preparation chamber. After desorption at 103 Pa a new type of weakly bound subsurface oxygen is identified, which can be transferred to the surface by heating the crystal to 470 K. CO2 is not adsorbed as such on clean silver at 300 K. However, it is adsorbed in the form of a carbonate ion if the surface is first exposed to oxygen. If the crystal is heated this complex decomposes into Oad and CO2 with an activation energy of 27 kcal/mol(1 kcal = 4.187 kJ). Up to an oxygen coverage of 0.25 one CO2 molecule is adsorbed per two oxygen atoms on the surface. At higher oxygen coverages the amount of CO2 adsorbed becomes smaller. CO readily reacts with Oad at room temperature to form CO2. This reaction has been used to measure the number of O atoms present on the surface at 300 K relative to the amount of CO2 that is adsorbed at 300 K by the formation of a carbonate ion. Weakly bound subsurface oxygen does not react with CO at 300 K. Adsorption of C2H4O at 110 K is promoted by the presence of atomic oxygen. The activation energy for desorption of C2H4O from clean silver is ~ 9 kcal/mol, whereas on the oxygen-precovered surface two states are found with activation energies of 8.5 and 12.5 kcal/mol. The results are discussed in terms of the mechanism of ethylene epoxidation over unpromoted and unmoderated silver.  相似文献   

11.
The reasons for the anomalously high thermal stability of cubane C8H8 and the mechanisms of its decomposition are studied by numerically simulating the dynamics of this metastable cluster at T = 1050–2000 K using a tight-binding potential. The decomposition activation energy is found from the temperature dependence of the cubane lifetime obtained from the numerical experiment; this energy is fairly high, E a = 1.9 ± 0.1 eV. The decomposition products are, as a rule, either C6H6 and C2H2 molecules or the isomer C8H8 with a lower energy. Original Russian Text ? M.M. Maslov, D.A. Lobanov, A.I. Podlivaev, L.A. Openov, 2009, published in Fizika Tverdogo Tela, 2009, Vol. 51, No. 3, pp. 609–612.  相似文献   

12.
Energy loss spectra of 2.5 keV electrons in the region of the carbon K-edge in C2H2, C2H4, C2H6 and C6H6 are report  相似文献   

13.
The microwave spectra of amine deuterated species of [2-35Cl] and [2-37-Cl]aniline, C6H4ClNH2, have been observed. The rotators associated with the first two states of the amino group inversion have been assigned. A geometric structure has been calculated from the moments of inertia of all isotopic species in the ground state, indicating a small out-of-plane angle (34.5°), and a torsion around the CN bond of the NH2 group. This deformation is explained by the formation of a hydrogen bond NH … Cl.  相似文献   

14.
The chemisorption of H2, O2, CO, CO2, NO, C2H2, C2H4 and C has been studied on the clean stepped Rh(755) and (331) surfaces. Low energy electron diffraction (LEED), Auger electron spectroscopy (AES) and thermal desorption spectroscopy (TDS) were used to determine the size and orientation of the unit cells, desorption temperatures and decomposition characteristics for each adsorbate. All of the molecules studied readily chemisorbed on both stepped surfaces and several ordered surface structures were observed. The LEED patterns seen on the (755) surface were due to the formation of surface structures on the (111) terraces, while on the (331) surface the step periodicity played an important role in the determination of the unit cells of the observed structures. When heated in O2 or C2H4 the (331) surface was more stable than the (755) surface which readily formed (111) and (100) facets. In the CO and CO2 TDS spectra a peak due to dissociated CO was observed on both surfaces. NO adsorption was dissociative at low exposures and associative at high exposures. C2H4 and C2H2 had similar adsorption and desorption properties and it is likely that the same adsorbed species was formed by both molecules.  相似文献   

15.
The pressure broadening and shift rates of the rubidium D2 absorption line 52S1/2→52P3/2 (780.24 nm) with CH4, C2H6, C3H8, n-C4H10, and He were measured for pressures ≤80 Torr using high-resolution laser spectroscopy. The broadening rates γB for CH4, C2H6, C3H8, n-C4H10, and He are 28.0, 28.1, 30.5, 31.3, and 20.3 (MHz/Torr), respectively. The corresponding shift rates γS are −8.4, −8.8, −9.7, −10.0, and 0.39 (MHz/Torr), respectively. The measured rates of Rb for the hydrocarbon buffer gas series of this study are also compared to the theoretically calculated rates of a purely attractive van der Waals difference potential. Good agreement is found to exist between measured and theoretical rates.  相似文献   

16.
Transient optical Kerr effect of liquids C2H4Cl2 and C2H4Br2 is investigated, for the first time to our knowledge, with a femtosecond (fs) probe laser delayed with respect to a coherent fs pump laser. Coherent coupling and electronic Kerr signals are observed around zero delay when pump and probe overlap. Persisting after the pump-probe overlap are Kerr signals arising from the torsional and other intramolecular vibrations of the trans and gauche conformations; Kerr signals arising from the intermolecular motion are also observed. Vibrational quantum interference is only observed in liquid C2H4Br2 and the related beats data are fitted with the torsional vibrations, 91 cm−1 (gauche) and 132 cm−1 (trans), and the CCBr angle-bending vibrations, 231 cm−1 (gauche) and 190 cm−1 (trans), with dephasing times, 0.45 ps, 0.45 ps, 2 ps, and 1.5 ps, respectively. These vibrational frequencies agree with those obtained in the frequency-domain. That no vibrational mode is observed for C2H4Cl2 might be attributed to ineffective Raman-pumping. Kerr signals observed after the pump-probe overlap are Fourier transformed to give the spectra of the intermolecular motion and the vibrational spectrum, which agrees with the one observed in the infrared absorption and/or Raman scattering heretofore.  相似文献   

17.
A detailed chemical kinetic model for oxidation of C2H4 in the intermediate temperature range and high pressure has been developed and validated experimentally. New ab initio calculations and RRKM analysis of the important C2H3 + O2 reaction was used to obtain rate coefficients over a wide range of conditions (0.003-100 bar, 200-3000 K). The results indicate that at 60 bar and medium temperatures vinyl peroxide, rather than CH2O and HCO, is the dominant product. The experiments, involving C2H4/O2 mixtures diluted in N2, were carried out in a high pressure flow reactor at 600-900 K and 60 bar, varying the reaction stoichiometry from very lean to fuel-rich conditions. Model predictions are generally satisfactory. The governing reaction mechanisms are outlined based on calculations with the kinetic model. Under the investigated conditions the oxidation pathways for C2H4 are more complex than those prevailing at higher temperatures and lower pressures. The major differences are the importance of the hydroxyethyl (CH2CH2OH) and 2-hydroperoxyethyl (CH2CH2OOH) radicals, formed from addition of OH and HO2 to C2H4, and vinyl peroxide, formed from C2H3 + O2. Hydroxyethyl is oxidized through the peroxide HOCH2CH2OO (lean conditions) or through ethenol (low O2 concentration), while 2-hydroperoxyethyl is converted through oxirane.  相似文献   

18.
Twenty-seven new cw far infrared laser lines with wavelengths between 137 and 988m have been observed from optically pumping C2H3F, C2H3Cl, C2H3Br, C2H5F, C2H3CN, CH2CF2, HCOOH and CH3Br with a CO2 laser. The wavelengths of these FIR laser lines were determined together with their optimum pressures and relative intensities.  相似文献   

19.
This paper reports the assignment of the rotational spectra of the m = 0 and 1 states of 13CC5H6-H2O and C6H5D-H2O dimers. The m = 1 progression was not identified or assigned for both 13CC5H6-H2O and C6H5D-H2O in the earlier work, though for the symmetric isotopomers (C6H6-H2O/D2O/H218O), they were identified [H.S. Gutowsky, T. Emilsson, E. Arunan, J. Chem. Phys. 99 (1993) 4883]. The m = 1 transitions for 13CC5H6-H2O and C6H5D-H2O were split into two, unlike that of the parent C6H6-H2O isotopomer. The splitting varied, somewhat randomly, with quantum numbers J and K. The m = 0 lines of 13CC5H6-H2O had significant overlap with the m = 1 lines of the parent isotopomer, clouding proper assignment, and leading to an rms deviation of about 200 kHz in the earlier work. The general semi-rigid molecular Hamiltonian coupled to an internal rotor, described recently by Duan et al. [Y.B. Duan, H.M. Zhang, K. Takagi, J. Chem. Phys. 104 (1996) 3914], is used in this work to assign both m = 0 and 1 states of 13CC5H6-H2O and C6H5D-H2O dimers. Consequently, the m = 0 fits for 13CC5H6-H2O/D2O have an rms deviation of only 4/7 kHz, comparable to experimental uncertainties. The fits for m = 1 transitions for 13CC5H6-H2O and C6H5D-H2O dimers have an rms deviation of about 200 kHz. However, it is of the same order of magnitude as that of the m = 1 state of the parent C6H6-H2O dimer. The A rotational constants determined from the m = 0 fits for both 13CC5H6-H2O and 13CC5H6-D2O isotopomers are identical and very close to the C rotational constant for 13CC5H6. This provides a direct experimental determination for the C rotational constant of 13CC5H6, which has a negligible dipole moment.  相似文献   

20.
Yuhai Hu 《Surface science》2007,601(21):5002-5009
The influence of pre-dosed O2 on the catalytic reduction of NO with 13C2H5OH on the surface of stepped Pt(3 3 2) was investigated using Fourier transform infra red reflection-absorption spectroscopy (FTIR-RAS) and thermal desorption spectroscopy (TDS). We show that the oxidation of 13C2H5OH with O2 is a very effective reaction, occurring at 150 K and giving rise to acetate. The presence of NO does not lead to any evident oxidation of 13C2H5OH irrespective of the annealing temperature. For the case of O2 + 13C2H5OH + NO co-adlayers, oxidation of 13C2H5OH also takes place at 150 K. However, no new surface species that are supposed to be an intermediate for the production of N2 are detected.The influence of O2 on the production and desorption of N2 is intimately related to both O2 and 13C2H5OH coverage. The presence of pre-dosed O2 does not greatly promote N2 desorption. In fact, N2 desorption is suppressed quantitatively with increasing O2 coverage, after which unreacted, or left-over O atoms appear and remain on steps. It is concluded that the presence of pre-dosed O2 does not play a role of activating reactants in the catalytic reduction of NO with 13C2H5OH on the surface of Pt(3 3 2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号