首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Programmed cell death has been a fascinating area of research since it throws new challenges and questions in spite of the tremendous ongoing research in this field. Recently, necroptosis, a programmed form of necrotic cell death, has been implicated in many diseases including neurological disorders. Receptor interacting serine/threonine protein kinase 1 (RIPK1) is an important regulatory protein involved in the necroptosis and inhibition of this protein is essential to stop necroptotic process and eventually cell death. Current structure-based virtual screening methods involve a wide range of strategies and recently, considering the multiple protein structures for pharmacophore extraction has been emphasized as a way to improve the outcome. However, using the pharmacophoric information completely during docking is very important. Further, in such methods, using the appropriate protein structures for docking is desirable. If not, potential compound hits, obtained through pharmacophore-based screening, may not have correct ranks and scores after docking. Therefore, a comprehensive integration of different ensemble methods is essential, which may provide better virtual screening results. In this study, dual ensemble screening, a novel computational strategy was used to identify diverse and potent inhibitors against RIPK1. All the pharmacophore features present in the binding site were captured using both the apo and holo protein structures and an ensemble pharmacophore was built by combining these features. This ensemble pharmacophore was employed in pharmacophore-based screening of ZINC database. The compound hits, thus obtained, were subjected to ensemble docking. The leads acquired through docking were further validated through feature evaluation and molecular dynamics simulation.  相似文献   

2.
We describe a novel method for ligand-based virtual screening, based on utilizing Self-Organizing Maps (SOM) as a novelty detection device. Novelty detection (or one-class classification) refers to the attempt of identifying patterns that do not belong to the space covered by a given data set. In ligand-based virtual screening, chemical structures perceived as novel lie outside the known activity space and can therefore be discarded from further investigation. In this context, the concept of "novel structure" refers to a compound, which is unlikely to share the activity of the query structures. Compounds not perceived as "novel" are suspected to share the activity of the query structures. Nowadays, various databases contain active structures but access to compounds which have been found to be inactive in a biological assay is limited. This work addresses this problem via novelty detection, which does not require proven inactive compounds. The structures are described by spatial autocorrelation functions weighted by atomic physicochemical properties. Different methods for selecting a subset of targets from a larger set are discussed. A comparison with similarity search based on Daylight fingerprints followed by data fusion is presented. The two methods complement each other to a large extent. In a retrospective screening of the WOMBAT database novelty detection with SOM gave enrichment factors between 105 and 462-an improvement over the similarity search based on Daylight fingerprints between 25% and 100%, when the 100 top ranked structures were considered. Novelty detection with SOM is applicable (1) to improve the retrieval of potentially active compounds also in concert with other virtual screening methods; (2) as a library design tool for discarding a large number of compounds, which are unlikely to possess a given biological activity; and (3) for selecting a small number of potentially active compounds from a large data set.  相似文献   

3.
Computationally efficient structure-based virtual screening methods have recently been reported that seek to find effective means to utilize experimental structure information without employing detailed molecular docking calculations. These tools can be coupled with efficient experimental screening technologies to improve the probability of identifying hits and leads for drug discovery research. Commercial software ROCS (rapid overlay of chemical structures) from Open Eye Scientific is such an example, which is a shape-based virtual screening method using the 3D structure of a ligand, typically from a bound X-ray costructure, as the query. We report here the development of a new structure-based pharmacophore search method (called Shape4) for virtual screening. This method adopts a variant of the ROCS shape technology and expands its use to work with an empty crystal structure. It employs a rigorous computational geometry method and a deterministic geometric casting algorithm to derive the negative image (i.e., pseudoligand) of a target binding site. Once the negative image (or pseudoligand) is generated, an efficient shape comparison algorithm in the commercial OE SHAPE Toolkit is adopted to compare and match small organic molecules with the shape of the pseudoligand. We report the detailed computational protocol and its computational validation using known biologically active compounds extracted from the WOMBAT database. Models derived for five selected targets were used to perform the virtual screening experiments to obtain the enrichment data for various virtual screening methods. It was found that our approach afforded similar or better enrichment ratios than other related methods, often with better diversity among the top ranking computational hits.  相似文献   

4.
Serotonin 5-HT6 receptor antagonists are thought to play an important role in the treatment of psychiatry, Alzheimer's disease, and probably obesity. To find novel and potent 5-HT6 antagonists and to provide a new idea for drug design, we used a ligand-based pharmacophore to perform the virtual screening of a commercially available database. A three-dimensional common feature pharmacophore model was developed by using the HipHop program provided in Catalyst software and was used as a query for screening the database. A recursive partitioning (RP) model which can separate active and inactive compounds was used as a filtering system. Finally a sequential virtual screening procedure (SQSP) was conducted, wherein both the common feature pharmacophore and the RP model were used in succession to improve the results. Some of the hits were selected based on druglikeness, ADME properties, structural diversity, and synthetic accessibility for real biological evaluation. The best hit compound showed a significant IC50 value of 9.6 nM and can be used as a lead for further drug development.  相似文献   

5.
The kappa opioid receptor (KOR) represents an attractive target for the development of drugs as potential antidepressants, anxiolytics and analgesics. A robust computational approach may guarantee a reduction in costs in the initial stages of drug discovery, novelty and accurate results. In this work, a virtual screening workflow of a library consisting of ~6 million molecules was set up, with the aim to find potential lead compounds that could manifest activity on the KOR. This in silico study provides a significant contribution in the identification of compounds capable of interacting with a specific molecular target. The main computational techniques adopted in this experimental work include: (i) virtual screening; (ii) drug design and leads optimization; (iii) molecular dynamics. The best hits are tripeptides prepared via solution phase peptide synthesis. These were tested in vivo, revealing a good antinociceptive effect after subcutaneous administration. However, further work is due to delineate their full pharmacological profile, in order to verify the features predicted by the in silico outcomes.  相似文献   

6.
Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) catalyses the fourth reaction of de novo pyrimidine biosynthesis in parasites, and represents an important target for the treatment of malaria. In this study, we describe pharmacophore-based virtual screening combined with docking study and biological evaluation as a rational strategy for identification of novel hits as antimalarial agents. Pharmacophore models were established from known PfDHODH inhibitors using the GALAHAD module with IC50 values ranging from 0.033 μM to 142 μM. The best pharmacophore model consisted of three hydrogen bond acceptor, one hydrogen bond donor and one hydrophobic features. The pharmacophore models were validated through receiver operating characteristic and Günere–Henry scoring methods. The best pharmacophore model as a 3D search query was searched against the IBS database. Several compounds with different structures (scaffolds) were retrieved as hit molecules. Among these compounds, those with a QFIT value of more than 81 were docked in the PfDHODH enzyme to further explore the binding modes of these compounds. In silico pharmacokinetic and toxicities were predicted for the best docked molecules. Finally, the identified hits were evaluated in vivo for their antimalarial activity in a parasite inhibition assay. The hits reported here showed good potential to become novel antimalarial agents.  相似文献   

7.
In a search for more effective and safe anti-diabetic compounds, we developed a pharmacophore model based on partial agonists of PPARγ. The model was used for the virtual screening of the Chinese Natural Product Database (CNPD), a library of plant-derived natural products primarily used in folk medicine. From the resulting hits, we selected methyl oleanonate, a compound found, among others, in Pistacia lentiscus var. Chia oleoresin (Chios mastic gum). The acid of methyl oleanonate, oleanonic acid, was identified as a PPARγ agonist through bioassay-guided chromatographic fractionations of Chios mastic gum fractions, whereas some other sub-fractions exhibited also biological activity towards PPARγ. The results from the present work are two-fold: on the one hand we demonstrate that the pharmacophore model we developed is able to select novel ligand scaffolds that act as PPARγ agonists; while at the same time it manifests that natural products are highly relevant for use in virtual screening-based drug discovery.  相似文献   

8.
Antagonism of CCR9 is a promising mechanism for treatment of inflammatory bowel disease, including ulcerative colitis and Crohn’s disease. There is limited experimental data on CCR9 and its ligands, complicating efforts to identify new small molecule antagonists. We present here results of a successful virtual screening and rational hit-to-lead campaign that led to the discovery and initial optimization of novel CCR9 antagonists. This work uses a novel data fusion strategy to integrate the output of multiple computational tools, such as 2D similarity search, shape similarity, pharmacophore searching, and molecular docking, as well as the identification and incorporation of privileged chemokine fragments. The application of various ranking strategies, which combined consensus and parallel selection methods to achieve a balance of enrichment and novelty, resulted in 198 virtual screening hits in total, with an overall hit rate of 18%. Several hits were developed into early leads through targeted synthesis and purchase of analogs.  相似文献   

9.
AimAn integrated protocol of virtual screening involving molecular docking, pharmacophore probing, and simulations was established to identify small novel molecules targeting crucial residues involved in the variant apoE ε4 to mimic its behavior as apoE2 thereby eliminating the amyloid plaque accumulation and facilitating its clearance.Materials and MethodsAn excellent ligand-based and structure-based approach was made to identify common pharmacophoric features involving structure-based docking with respect to apoE ε4 leading to the development of apoE ε4 inhibitors possessing new scaffolds. An effort was made to design multiple-substituted triazine derivatives series bearing a novel scaffold. A structure-based pharmacophore mapping was developed to explore the binding sites of apoE ε4 which was taken into consideration. Subsequently, virtual screening, ADMET, DFT searches were at work to narrow down the proposed hits to be forwarded as a potential drug likes candidates. Further, the binding patterns of the best-proposed hits were studied and were forwarded for molecular dynamic simulations of 10 ns for its structural optimization.ResultsSelectivity profile for the most promising candidates was studied, revealing significantly C13 and C15 to be the most potent compounds. The proposed hits can be forwarded for further study against apoE ε4 involved in neurological disorder Alzheimer’s.  相似文献   

10.
The design of biologically active compounds from ligand-free protein structures using a structure-based approach is still a major challenge. In this paper, we present a fast knowledge-based approach (HS-Pharm) that allows the prioritization of cavity atoms that should be targeted for ligand binding, by training machine learning algorithms with atom-based fingerprints of known ligand-binding pockets. The knowledge of hot spots for ligand binding is here used for focusing structure-based pharmacophore models. Three targets of pharmacological interest (neuraminidase, beta2 adrenergic receptor, and cyclooxygenase-2) were used to test the evaluated methodology, and the derived structure-based pharmacophores were used in retrospective virtual screening studies. The current study shows that structure-based pharmacophore screening is a powerful technique for the fast identification of potential hits in a chemical library, and that it is a valid alternative to virtual screening by molecular docking.  相似文献   

11.
Squalene synthase (SQS) is a potential target for hyperlipidemia treatment. To identify novel chemical scaffolds of SQS inhibitors, we generated 3D-QSAR pharmacophore models using HypoGen. The best quantitative pharmacophore model, Hypo 1, was selected for virtual screening using two chemical databases, Specs and Traditional Chinese Medicine database (TCM). The best-mapped hit compounds were then subjected to filtering by Lipinskis rule of five and docking studies to refine the hits. Finally, five compounds were selected from the top-ranked hit compounds for SQS inhibitory assay in vitro. Three of these compounds could inhibit SQS in vitro, and should be further evaluated pre-clinically as a treatment for hyperlipidemia.  相似文献   

12.
The methods of computer-aided drug design can be divided into two categories according to whether or not the structures of receptors are known1, corresponding to two principal strategies: (1) searching the bio-active ligands against virtual combinatorial libraries and calculating the affinity energy between ligand and receptor by docking ; (2) QSAR and 3D-structure data-mining. 3D-QSAR method is now applied widely to drug discovery, but this method is generally limited to refine the structu…  相似文献   

13.
Modulation of protein-protein interactions (PPI) has emerged as a new concept in rational drug design. Here, we present a computational protocol for identifying potential PPI inhibitors. Relevant regions of interfaces (epitopes) are predicted for three-dimensional protein models and serve as queries for virtual compound screening. We present a computational screening protocol that incorporates two different pharmacophore models. One model is based on the mathematical concept of autocorrelation vectors and the other utilizes fuzzy labeled graphs. In a proof-of-concept study, we were able to identify serine protease inhibitors using a predicted trypsin epitope as query. Our virtual screening framework may be suited for rapid identification of PPI inhibitors and suggesting bioactive tool compounds.  相似文献   

14.
Proteins interact with small molecules through specific molecular recognition, which is central to essential biological functions in living systems. Therefore, understanding such interactions is crucial for basic sciences and drug discovery. Here, we present S tructure t emplate-based a b initio li gand design s olution (Stalis), a knowledge-based approach that uses structure templates from the Protein Data Bank libraries of whole ligands and their fragments and generates a set of molecules (virtual ligands) whose structures represent the pocket shape and chemical features of a given target binding site. Our benchmark performance evaluation shows that ligand structure-based virtual screening using virtual ligands from Stalis outperforms a receptor structure-based virtual screening using AutoDock Vina, demonstrating reliable overall screening performance applicable to computational high-throughput screening. However, virtual ligands from Stalis are worse in recognizing active compounds at the small fraction of a rank-ordered list of screened library compounds than crystal ligands, due to the low resolution of the virtual ligand structures. In conclusion, Stalis can facilitate drug discovery research by designing virtual ligands that can be used for fast ligand structure-based virtual screening. Moreover, Stalis provides actual three-dimensional ligand structures that likely bind to a target protein, enabling to gain structural insight into potential ligands. Stalis can be an efficient computational platform for high-throughput ligand design for fundamental biological study and drug discovery research at the proteomic level. © 2019 Wiley Periodicals, Inc.  相似文献   

15.
Type 2 diabetes mellitus (T2DM) is one of the most widely prevalent metabolic disorders with no cure to date thus remains the most challenging task in the current drug discovery. Therefore, the only strategy to control diabetes prevalence is to develop novel efficacious therapeutics. Dipeptidyl Peptidase 4 (DPP-4) inhibitors are currently used as anti-diabetic drugs for the inhibition of incretins. This study aims to construct the chemical feature based on pharmacophore models for dipeptidyl peptidase IV. The structure-based pharmacophore modeling has been employed to evaluate new inhibitors of DPP-4. A four-featured pharmacophore model was developed from crystal structure of DPP-4 enzyme with 4-(2-aminoethyl) benzenesulfonyl fluoride in its active site via pharmacophore constructing tool of Molecular Operating Environment (MOE) consisting F1 Hyd (hydrophobic region), F2 Hyd|Cat|Don (hydrophobic cationic and donor region), F3 Acc (acceptor region) and F4 Hyd (hydrophobic region). The generated pharmacophore model was used for virtual screening of in-house compound library (the available compounds which were used for initial screening to get the few compounds for the current studies). The resultant selected compounds, after virtual screening were further validated using in vitro assay. Furthermore, structure-activity relationship was carried out for the compounds possessing significant inhibition potential after docking studies. The binding free energy of analogs was evaluated via molecular mechanics generalized Born surface area (MM-GBSA) and Poisson-Boltzmann surface area (MM-PBSA) methods using AMBER 16 as a molecular dynamics (MD) simulation package. Based on potential findings, we report that selected candidates are more likely to be used as DPP-4 inhibitors or as starting leads for the development of novel and potent DPP-4 inhibitors.  相似文献   

16.
HIV-1 integrase (IN) is a retroviral enzyme that catalyses integration of the reverse-transcribed viral DNA into the host genome, which is necessary for efficient viral replication. In this study, we have performed an in silico virtual screening for the identification of potential HIV-1 IN strand transfer (ST) inhibitors. Pharmacophore modelling and atom-based 3D-QSAR studies were carried out for a series of compounds belonging to 3-Hydroxypyrimidine-2,4-diones. Based on the ligand-based pharmacophore model, we obtained a five-point pharmacophore with two hydrogen bond acceptors (A), one hydrogen bond donor (D), one hydrophobic group (H) and one aromatic ring (R) as pharmacophoric features. The pharmacophore hypothesis AADHR was used as a 3D query in a sequential virtual screening study to filter small molecule databases Maybridge, ChemBridge and Asinex. Hits matching with pharmacophore hypothesis AADHR were retrieved and passed progressively through Lipinski’s rule of five filtering, molecular docking and hierarchical clustering. The five compounds with best hits with novel and diverse chemotypes were subjected to QM/MM docking, which showed improved docking accuracy. We further performed molecular dynamics simulation and found three compounds that form stable interactions with key residues. These compounds could be used as a leads for further drug development and rational design of HIV-1 IN inhibitors.  相似文献   

17.
Human chemokine receptor CXCR3 (hCXCR3) antagonists have potential therapeutic applications as antivirus, antitumor, and anti-inflammatory agents. A novel virtual screening protocol, which combines pharmacophore-based and structure-based approaches, was proposed. A three-dimensional QSAR pharmacophore model and a structure-based docking model were built to virtually screen for hCXCR3 antagonists. The hCXCR3 antagonist binding site was constructed by homology modeling and molecular dynamics (MD) simulation. By combining the structure-based and ligand-based screenings results, 95% of the compounds satisfied either pharmacophore or docking score criteria and would be chosen as hits if the union of the two searches was taken. The false negative rates were 15% for the pharmacophore model, 14% for the homology model, and 5% for the combined model. Therefore, the consistency of the pharmacophore model and the structural binding model is 219/273 = 80%. The hit rate for the virtual screening protocol is 273/286 = 95%. This work demonstrated that the quality of both the pharmacophore model and homology model can be measured by the consistency of the two models, and the false negatives in virtual screening can be reduced by combining two virtual screening approaches.  相似文献   

18.
Deep machine learning is expanding the conceptual framework and capacity of computational compound design, enabling new applications through generative modeling. We have explored the systematic design of covalent protein kinase inhibitors by learning from kinome-relevant chemical space, followed by focusing on an exemplary kinase of interest. Covalent inhibitors experience a renaissance in drug discovery, especially for targeting protein kinases. However, computational design of this class of inhibitors has thus far only been little investigated. To this end, we have devised a computational approach combining fragment-based design and deep generative modeling augmented by three-dimensional pharmacophore screening. This approach is thought to be particularly relevant for medicinal chemistry applications because it combines knowledge-based elements with deep learning and is chemically intuitive. As an exemplary application, we report for Bruton’s tyrosine kinase (BTK), a major drug target for the treatment of inflammatory diseases and leukemia, the generation of novel candidate inhibitors with a specific chemically reactive group for covalent modification, requiring only little target-specific compound information to guide the design efforts. Newly generated compounds include known inhibitors and characteristic substructures and many novel candidates, thus lending credence to the computational approach, which is readily applicable to other targets.  相似文献   

19.
An efficient virtual and rational drug design method is presented. It combines virtual bioactive compound generation with 3D-QSAR model and docking. Using this method, it is possible to generate a lot of highly diverse molecules and find virtual active lead compounds. The method was validated by the study of a set of anti-tumor drugs. With the constraints of pharmacophore obtained by DISCO implemented in SYBYL 6.8, 97 virtual bioactive compounds were generated, and their anti-tumor activities were predicted by CoMFA. Eight structures with high activity were selected and screened by the 3D-QSAR model. The most active generated structure was further investigated by modifying its structure in order to increase the activity. A comparative docking study with telomeric receptor was carried out, and the results showed that the generated structures could form more stable complexes with receptor than the reference compound selected from experimental data. This investigation showed that the proposed method was a feasible way for rational drug design with high screening efficiency.  相似文献   

20.
An efficient virtual and rational drug design method is presented. It combines virtual bioactive compound generation with 3D-QSAR model and docking. Using this method, it is possible to generate a lot of highly diverse molecules and find virtual active lead compounds. The method was validated by the study of a set of anti-tumor drugs. With the constraints of pharmacophore obtained by DISCO implemented in SYBYL 6.8, 97 virtual bioactive compounds were generated, and their anti-tumor activities were predicted by CoMFA. Eight structures with high activity were selected and screened by the 3D-QSAR model. The most active generated structure was further investigated by modifying its structure in order to increase the activity. A comparative docking study with telomeric receptor was carried out, and the results showed that the generated structures could form more stable complexes with receptor than the reference compound selected from experimental data. This investigation showed that the proposed method was a feasible way for rational drug design with high screening efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号