首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
In this paper, two fourth-order accurate compact difference schemes are presented for solving the Helmholtz equation in two space dimensions when the corresponding wave numbers are large. The main idea is to derive and to study a fourth-order accurate compact difference scheme whose leading truncation term, namely, the O(h^4) term, is independent of the wave number and the solution of the Helmholtz equation. The convergence property of the compact schemes are analyzed and the implementation of solving the resulting linear algebraic system based on a FFT approach is considered. Numerical results are presented, which support our theoretical predictions.  相似文献   

2.
In this paper, a discontinuous finite element method for the positive and symmetric, first-order hyperbolic systems (steady and nonsteady state) is constructed and analyzed by using linear triangle elements, and the O(h^2)-order optimal error estimates are derived under the assumption of strongly regular triangulation and the Ha-regularity for the exact solutions. The convergence analysis is based on some superclose estimates of the interpolation approximation. Finally, we discuss the Maxwell equations in a two-dimensional domain, and numerical experiments are given to validate the theoretical results.  相似文献   

3.
In this paper, we analyze a compact finite difference scheme for computing a coupled nonlinear SchrSdinger equation. The proposed scheme not only conserves the totM mass and energy in the discrete level but also is decoupled and linearized in practical computa- tion. Due to the difficulty caused by compact difference on the nonlinear term, it is very hard to obtain the optimal error estimate without any restriction on the grid ratio. In order to overcome the difficulty, we transform the compact difference scheme into a special and equivalent vector form, then use the energy method and some important lemmas to obtain the optimal convergent rate, without any restriction on the grid ratio, at the order of O(h4 +r2) in the discrete L∞ -norm with time step - and mesh size h. Finally, numerical results are reported to test our theoretical results of the proposed scheme.  相似文献   

4.
Quasi-interpolation is very useful in the study of approximation theory and its applications,since it can yield solutions directly without the need to solve any linear system of equations.Based on the good performance,Chen and Wu presented a kind of multiquadric (MQ) quasi-interpolation,which is generalized from the L D operator,and used it to solve hyperbolic conservation laws and Burgers’ equation.In this paper,a numerical scheme is presented based on Chen and Wu’s method for solving the Korteweg-de Vries (KdV) equation.The presented scheme is obtained by using the second-order central divided difference of the spatial derivative to approximate the third-order spatial derivative,and the forward divided difference to approximate the temporal derivative,where the spatial derivative is approximated by the derivative of the generalized L D quasi-interpolation operator.The algorithm is very simple and easy to implement and the numerical experiments show that it is feasible and valid.  相似文献   

5.
A cell-centered lagrangian scheme in two-dimensional cylindrical geometry   总被引:2,自引:0,他引:2  
A new Lagrangian cell-centered scheme for two-dimensional compressible flows in planar geometry is proposed by Maire et al.The main new feature of the algorithm is that the vertex velocities and the numerical fluxes through the cell interfaces are all evaluated in a coherent manner contrary to standard approaches.In this paper the method introduced by Maire et al.is extended for the equations of Lagrangian gas dynamics in cylindrical symmetry.Two different schemes are proposed,whose difference is that one uses volume weighting and the other area weighting in the discretization of the momentum equation.In the both schemes the conservation of total energy is ensured,and the nodal solver is adopted which has the same formulation as that in Cartesian coordinates.The volume weighting scheme preserves the momentum conservation and the area-weighting scheme preserves spherical symmetry.The numerical examples demonstrate our theoretical considerations and the robustness of the new method.  相似文献   

6.
In this paper, we extend the reduced basis methods for parameter dependent problems to the parareal in time algorithm introduced by Lions et al. [12] and solve a nonlinear evolutionary parabolic partial differential equation. The fine solver is based on the finite element method or spectral element method in space and a semi-implicit Runge-Kutta scheme in time. The coarse solver is based on a semi-implicit scheme in time and the reduced basis approximation in space. Of[line-online procedures are developed, and it is proved that the computational complexity of the on-line stage depends only on the dimension of the reduced basis space (typically small). Parareal in time algorithms based on a multi-grids finite element method and a multi-degrees finite element method are also presented. Some numerical results are reported.  相似文献   

7.
In this paper, a quadrature-free scheme of spline method for two-dimensional Navier- Stokes equation is derived, which can dramatically improve the efficiency of spline method for fluid problems proposed by Lai and Wenston(2004). Additionally, the explicit formulation for boundary condition with up to second order derivatives is presented. The numerical simulations on several benchmark problems show that the scheme is very efficient.  相似文献   

8.
An A. D. I. Galerkin scheme for three-dimensional nonlinear parabolic integro-differen-tial equation is studied. By using alternating-direction, the three-dimensional problem is reduced to a family of single space variable problems, the calculation is simplified; by using a local approxima-tion of the coefficients based on patches of finite elements, the coefficient matrix is updated at each time step; by using Ritz-Volterra projection, integration by part and other techniques, the influence coming from the integral term is treated; by using inductive hypothesis reasoning, the difficulty coming from the nonlinearity is treated. For both Galerkin and A. D. I. Galerkin schemes the con-vergence properties are rigorously demonstrated, the optimal H~1-norm and L~2-norm estimates are obtained.  相似文献   

9.
The alternately directional implicit (ADI) scheme is usually used in 3D depth migration. It splits the 3D square-root operator along crossline and inline directions alternately. In this paper, based on the ideal of data line, the four-way splitting schemes and their splitting errors for the finite-difference (FD) method and the hybrid method are investigated. The wavefield extrapolation of four-way splitting scheme is accomplished on a data line and is stable unconditionally. Numerical analysis of splitting errors show that the two-way FD migration have visible numerical anisotropic errors, and that four-way FD migration has much less splitting errors than two-way FD migration has. For the hybrid method, the differences of numerical anisotropic errors between two-way scheme and four-way scheme are small in the case of lower lateral velocity variations. The schemes presented in this paper can be used in 3D post-stack or prestack depth migration. Two numerical calculations of 3D depth migration are completed. One is the four-way FD and hybrid 3D post-stack depth migration for an impulse response, which shows that the anisotropic errors can be eliminated effectively in the cases of constant and variable velocity variations. The other is the 3D shot-profile prestack depth migration for SEG/EAEG benchmark model with two-way hybrid splitting scheme, which presents good imaging results. The Message Passing Interface (MPI) programme based on shot number is adopted.  相似文献   

10.
EQ rot 1 nonconforming finite element approximation to a class of nonlinear dual phase lagging heat conduction equations is discussed for semi-discrete and fully-discrete schemes. By use of a special property, that is, the consistency error of this element is of order O(h2 ) one order higher than its interpolation error O(h), the superclose results of order O(h2 ) in broken H1 -norm are obtained. At the same time, the global superconvergence in broken H1 -norm is deduced by interpolation postprocessing technique. Moreover, the extrapolation result with order O(h4 ) is derived by constructing a new interpolation postprocessing operator and extrapolation scheme based on the known asymptotic expansion formulas of EQ rot 1 element. Finally, optimal error estimate is gained for a proposed fully-discrete scheme by different approaches from the previous literature.  相似文献   

11.
A boundary value problem is considered for a singularly perturbed parabolic convection-diffusion equation;we construct a finite difference scheme on a priori (se-quentially) adapted meshes and study its convergence.The scheme on a priori adapted meshes is constructed using a majorant function for the singular component of the discrete solution,which allows us to find a priori a subdomain where the computed solution requires a further improvement.This subdomain is defined by the perturbation parameterε,the step-size of a uniform mesh in x,and also by the required accuracy of the discrete solution and the prescribed number of refinement iterations K for im- proving the solution.To solve the discrete problems aimed at the improvement of the solution,we use uniform meshes on the subdomains.The error of the numerical so- lution depends weakly on the parameterε.The scheme converges almostε-uniformly, precisely,under the condition N~(-1)=o(ε~v),where N denotes the number of nodes in the spatial mesh,and the value v=v(K) can be chosen arbitrarily small for suitable K.  相似文献   

12.
In this article, a Timoshenko beam with tip body and boundary damping is considered. A linearized three-level difference scheme of the Timoshenko beam equations on uniform meshes is derived by the method of reduction of order. The unique solvability, unconditional stability and convergence of the difference scheme are proved. The convergence order in maximum norm is of order two in both space and time. A numerical example is presented to demonstrate the theoretical results.  相似文献   

13.
陈传淼 《计算数学》2003,25(4):385-392
Based on an orthogonal expansion in a triangle, superconvergence for L^2-projection to linear and quadratic triangular elements is studied.Assume that Ω is a polygonal domain,triangulation is uniform and Th is a set of all vertexesand side midpoints.Then, on Th,the average gradient ^-D(u-uh)=O(h^2) for linear element uh,and u-uh=O(h^4) for quadratic element uh. Under someboundary conditions,these properties upto the boundary are valid.  相似文献   

14.
In applications it is useful to compute the local average empirical statistics on u. A very simple relation exists when of a function f(u) of an input u from the local averages are given by a Haar approximation. The question is to know if it holds for higher order approximation methods. To do so, it is necessary to use approximate product operators defined over linear approximation spaces. These products are characterized by a Strang and Fix like condition. An explicit construction of these product operators is exhibited for piecewise polynomial functions, using Hermite interpolation. The averaging relation which holds for the Haar approximation is then recovered when the product is defined by a two point Hermite interpolation.  相似文献   

15.
The approximation of problems with linear convection and degenerate nonlinear difFusion,which arise in the framework of the transport of energy in porous media with thermodynamic transitions,is done usingθ-scheme based on the centred gradient discretisation method.The convergence of the numerical scheme is proved,although the test functions which can be chosen are restricted by the weak regularity hypotheses on the convection field,owing to the application of a discrete Gronwall lemma and a general result for the time translate in the gradient discretisation setting.Some numerical examples,using both the Control Volume Finite Element method and the Vertex Approximate Gradient scheme,show the role ofθfor stabilising the scheme.  相似文献   

16.
A local remapping algorithm for scalar function on quadrilateral meshes is described. The remapper from a distorted grid to a rezoned grid is usually regarded as a conservative interpolation problem. The present paper introduces a pseudo time to transform the interpolation into an initial value problem on a moving grid, and construct a moving mesh method to solve it. The new feature of the algorithm is the introduction of multi- point information on each edge, which leads to the numerical flux consistent with grid node motion. During the procedure of deriving scheme, we illustrate a framework about how the algorithms on a rectangular mesh are easily generated to those on a moving mesh. The basic ideas include: (i) introducing coordinate transformation, which maps the irregular domain in physical space to a perfectly regular computational domain, and (ii) deriving finite volume methods in the physical domain, which can be viewed as a discretization of the transformed equation. The resulting scheme is second-order accurate, conservative and monotonicity preserving. Numerical examples are carried out to show the good performance of ore" schemes.  相似文献   

17.
This paper proposes an efficient ADER(Arbitrary DERivatives in space and time)discontinuous Galerkin(DG)scheme to directly solve the Hamilton-Jacobi equation.Unlike multi-stage Runge-Kutta methods used in the Runge-Kutta DG(RKDG)schemes,the ADER scheme is one-stage in time discretization,which is desirable in many applications.The ADER scheme used here relies on a local continuous spacetime Galerkin predictor instead of the usual Cauchy-Kovalewski procedure to achieve high order accuracy both in space and time.In such predictor step,a local Cauchy problem in each cell is solved based on a weak formulation of the original equations in spacetime.The resulting spacetime representation of the numerical solution provides the temporal accuracy that matches the spatial accuracy of the underlying DG solution.The scheme is formulated in the modal space and the volume integral and the numerical fluxes at the cell interfaces can be explicitly written.The explicit formulae of the scheme at third order is provided on two-dimensional structured meshes.The computational complexity of the ADER-DG scheme is compared to that of the RKDG scheme.Numerical experiments are also provided to demonstrate the accuracy and efficiency of our scheme.  相似文献   

18.
抛物型和双曲型积分-微分方程有限元逼近的超收敛性质   总被引:1,自引:0,他引:1  
张铁  李长军 《东北数学》2001,17(3):279-288
The object of this paper is to investigate the superconvergence properties of finite element approximations to parabolic and hyperbolic integro-differential equations.The quasi projection technique introduced earlier by Douglas et al.is developed to derive the O(h^2r)order knot superconvergence in the case of a single space variable,and to show the optimal order negative norm estimates in the case of several space variables.  相似文献   

19.
Alternating direction finite element (ADFE) scheme for d-dimensional nonlin-ear system of parabolic integro-differential equations is studied. By using a local approxi-mation based on patches of finite elements to treat the capacity term qi(u), decomposition of the coefficient matrix is realized; by using alternating direction, the multi-dimensional problem is reduced to a family of single space variable problems, calculation work is sim-plified; by using finite element method, high accuracy for space variant is kept; by using inductive hypothesis reasoning, the difficulty coming from the nonlinearity of the coeffi-cients and boundary conditions is treated; by introducing Ritz-Volterra projection, the difficulty coming from the memory term is solved. Finally, by using various techniques for priori estimate for differential equations, the unique resolvability and convergence proper-ties for both FE and ADFE schemes are rigorously demonstrated, and optimal H1 and L2 norm space estimates and O((△t)2) estim  相似文献   

20.
This paper focusses on a peeling phenomenon governed by a nonlinear wave equation with a free boundary.Under the hypotheses that the total variation of the intial data and the boundary data are small,the global existence of a weak solution to the nonlinear problem(1.1)-(1.3) is proven by a modified Glimm scheme.The regularity of the peeling front is established,and the asymptotic behaviour of the obtained solution and the peeling front at infinity is also studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号