首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Mechanical activation (MA) of the LiOH+V2O5 and Li2CO3+V2O5 mixtures followed by brief heating at 673 K was used to prepare dispersed Li1+xV3O8. It was shown that structural transformations during MA are accompanied by reduction processes. EPR spectra of Li1+xV3O8 are attributed to vanadyl VO2+ ions with weak exchange interaction. The interaction of localized electrons (V4+ ions) with electron gas (delocalized electrons), which is exhibited through the dependence of EPR line width of vanadium ions versus measurement temperature (C–S–C relaxation), is revealed. It is shown that C–S–C relaxation is different for intermediate and final products. The properties of mechanochemically prepared Li1+xV3O8 are compared with those of HT-Li1+xV3O8, obtained by conventional solid state reaction. Mechanochemically prepared Li1+xV3O8 is characterized by a similar amount of vanadium ions, producing electron gas, but a higher specific surface area.  相似文献   

2.
A New Access to Alkali Vanadates(IV,V) Crystal Structure of Rb2V3O8 By heating vanadium(V) oxide with rubidium iodide to 500°C, the vanadium experiences partial reduction and Rb2V3O8 is obtained. It has the fresnoite structure. Crystal data: a = 892.29(7), c = 554.49(9) pm at 20°C, tetragonal, space group P4bm, Z = 2. X-ray crystal structure determination with 620 observed reflexions, R = 0.027. V2O7 units share vertices with VO5 square pyramids, forming layers; a layer can be regarded as association product of VO2+ and V2O74? ions. The Rb+ ions between the layers have pentagonal-antiprismatic coordination.  相似文献   

3.
Na9V14O35 (η-NaxV2O5) has been synthesized via solid-state reaction in an evacuated sealed silica ampoule and tested as electroactive material for Na-ion batteries. According to powder X-ray diffraction, electron diffraction and atomic resolution scanning transmission electron microscopy, Na9V14O35 adopts a monoclinic structure consisting of layers of corner- and edge-sharing VO5 tetragonal pyramids and VO4 tetrahedra with Na cations positioned between the layers, and can be considered as sodium vanadium(IV,V) oxovanadate Na9V104.1+O19(V5+O4)4. Behavior of Na9V14O35 as a positive and negative electrode in Na half-cells was investigated by galvanostatic cycling against metallic Na, synchrotron powder X-ray diffraction and electron energy loss spectroscopy. Being charged to 4.6 V vs. Na+/Na, almost 3 Na can be extracted per Na9V14O35 formula, resulting in electrochemical capacity of ~60 mAh g−1. Upon discharge below 1 V, Na9V14O35 uptakes sodium up to Na:V = 1:1 ratio that is accompanied by drastic elongation of the separation between the layers of the VO4 tetrahedra and VO5 tetragonal pyramids and volume increase of about 31%. Below 0.25 V, the ordered layered Na9V14O35 structure transforms into a rock-salt type disordered structure and ultimately into amorphous products of a conversion reaction at 0.1 V. The discharge capacity of 490 mAh g−1 delivered at first cycle due to the conversion reaction fades with the number of charge-discharge cycles.  相似文献   

4.
Extraction of vanadium(V) with 8-quinolinol into chlorobenzene is discussed. Three dimeric species are shown to be responsible for the extraction: 2VO3- + 4(HOx)o α (V2O3Ox4)o + 2OH-; log Kex,1 = -1.60 ± 0.10 2VO3- + 4(HOx)o + H+ + ClO4- α (V2O3H(Ox)4 · ClO4)o + 2OH-; log Kex,2 = 1.55 ± 0.10 2VO3- + 4(HOx)o + 2H+ + 2ClO4- α (V2O2Ox4 · 2ClO4)o + 2OH-; log Kex,3 = 2.65 ± 0.10 The vanadium(V) complex of 8-quinolinol has also been studied by thermogravimetry and i.r. and visible spectroscopy; an oxo-bridged dimeric structure is postulated. In contrast to 8-quinolinol, 2-methyl-8-quinolinol gives a monomeric vanadium(V) complex under the usual experimental conditions.  相似文献   

5.
The electrochemical transfer behaviour of vanadium-containing heteropolytungstate anions [PW12−xVxO40](3+x)− (x = 1−4) across the water | nitrobenzene interface has been investigated by cyclic voltammetry and chronopotentiometry with cyclic linear current scanning. The transfer of PW11V1O4−40, HPW10V2O4−40, H2PW10V2O3−40, H3PW9V3O3−40 and H4PW8V4O3−40 across the water | nitrobenzene interface can be observed within the potential window. The effects were observed of pH in the water phase on the transfer behaviour and the formation of vanadium-containing heteropolytungstate anions in solution. Heteropolytungstate anions become more stable due to their involving the vanadium atom. The degree of protonation and the dissociation constant of the trivalent vanadium-containing heteropolytungstate anion of protonation increase with increasing vanadium content. The transfer processes are diffusion-controlled. The standard transfer potential, the standard Gibbs energy and the dissociation constant for vanadium-containing heteropolytungstate anions have been obtained and the transfer mechanisms are discussed.  相似文献   

6.
Diffusion coefficients of vanadium ions in cation exchange membranes are of interest because they allow to calculate the ion exchange across the membrane in an all vanadium redox flow battery which leads to undesired cross contamination and energy losses in the battery system. Diffusion coefficients of V2+, V3+, VO2+ and VO+2 ions in CMS, CMV and CMX cation exchange membranes have been determined by measuring the ion exchange fluxes of these ions with H3O+ ions using a dialysis cell. The experimental data are evaluated on the basis of integrated flux equations which require also ion exchange sorption equilibria obtained already in previous work. The lowest diffusion coefficients are observed in the CMS membrane for all vanadium ions. This membrane turns out to be the most suitable one for being applied in a vanadium battery since it is expected to prevent most effectively cross contamination of vanadium ions.  相似文献   

7.
A neutral dinuclear vanadium complex containing both oxido and dioxidovanadium cores with hydrazone based ligand, [VO(OCH3)(CH3OH)(HL)VO2] ( 1 ) {H4L = bis[(E)‐N′‐(5‐bromo‐2‐hydroxybenzylidene)]‐carbohydrazide}, was synthesized and fully characterized by X‐ray crystallography and spectroscopic methods (IR, UV/Vis, NMR). The ligand acts as a trinegative hexadentate N3O3 donor ligand to form a dinuclear complex and during the reaction V4+ is oxidized to V5+. The coordination polyhedra are a VO5N distorted octahedron for the mono‐oxidovanadium core and a VO3N2 trigonal bipyramid for the dioxidovanadium core. The results of catalytic reactions indicate that 1 is a highly active catalyst in the clean epoxidation reaction of cis‐cyclooctene using aqueous hydrogen peroxide in acetonitrile. Cyclic voltammetric experiments of 1 in DMSO reveal two quasi‐reversible peaks due to the VO3+–VO2+ and VO2+–VO2 couples.  相似文献   

8.
Film electrodes, modified with the NaV6O15(Na 0.33 V 2 O 5) bronze and selective to V(5+) ions in acidic and neutral media, are studied. The active concentration range is shown to be 10-2 to 10-5 M. The concentration dependence of the potential obeys the Nernst equation with a slope of 59.4 ±0.8 mV/pc corresponding to a one-electron transition VO 2 + → VO2+ at pH 1.5-2.0 (cation function). At pH 5.0-6.0, the dependence corresponds to the transition VO 3 - → VO2+ (anion function) with a slope of-58.0 ±0.7 mV/pc  相似文献   

9.
In the V(V)H2O2/AcOH system, C5–C20 n-alkanes, isooctane, and neohexane undergo oxidation to ketones and alcohols; the oxidation products of branched alkanes are indicative of a C–C bond cleavage in these substrates. A concept is developed, according to which the peroxo complexes of vanadium(V) are responsible for alkane oxidation. These complexes can transfer the oxygen atom or the O radical cation to a substrate. The formation of nitrous oxide was found in the oxidation of molecular nitrogen in the H2O2/V(V)/CF3COOH system.  相似文献   

10.
Mössbauer spectra of the Fe1+xV2−xO4 spinel solid solutions are taken to investigate the cation distribution. Room temperature spectra can be interpreted by assuming that the cation distribution is represented approximately as Fe2+[Fe3+xV3+2−x]O4 for 0 x 0.35 and Fe3+[Fe2+Fe3+x−1V3+2−x]O4 for 1 x 2 and the ionic valence arrangement changes from the 2-3-3 type (Fe2+[Fe3+xV3+2−x]O4) to the 3-2-3 one (Fe3+[Fe2+V3+]O4) in the range 0.35 x 1. Fe2VO4 is found to be 3-2-3 spinel, Fe3+[Fe2+V3+]O4. Its paramagnetic spectrum at 473°K is, however, composed of a broad single line with isomer shift value of 0.61 mm/sec relative to stainless steel, in which the line splitting due to the ferric and ferrous ions is rendered indistinguishable.  相似文献   

11.
Summary M2[VO(nta)(O2)]·xH2O, where M+ is NH inf4 p+ , K+ or Rb+ and nta is nitrilotriacetate, and Sr[VO(nta)(O2)]·2H2O were synthesized. The electronic spectra of aqueous KVO3-H2O2-H3nta-HClO4(KOH) solutions (pH 1.45–5.62) and the thermal decomposition of K2[VO(nta)(O2)]· 2H2O with active oxygen release at 275° C showed that the nta-monoperoxo complex is the most stable vanadium(V) peroxo complex so far investigated. The anhydrous potassium salt was prepared on heating the crystallohydrate under dynamic conditions. The i.r. spectra indicate the same anion structure in solution and in the solid state where nta is coordinated as a tetradentate ligand.  相似文献   

12.
Radical cations and dications of two carotenoids astaxanthin and canthaxanthin were prepared by oxidation with FeCl3 in fluorinated alcohols at room temperature. Absorption and electroabsorption (Stark effect) spectra were recorded for astaxanthin cations in mixed frozen matrices at temperatures about 160 K. The D0→D2 transition in cation radical is at 835 nm. The electroabsorption spectrum for the D0→D2 transition exhibits a negative change of molecular polarizability, Δα=−1.2·10−38 C·m2/V (−105 A3), which seems to originate from the change in bond order alternation in the ground state rather than from the electric field-induced interaction of D1 and D2 excited states. Absorption spectrum of astaxanthin dication is located at 715–717 nm, between those of D0→D2 in cation radical and S0→S2 in neutral carotenoid. Its shape reflects a short vibronic progression and strong inhomogeneous broadening. The polarizability change on electronic excitation, Δα=2.89·10−38 C·m2/V (260 A3), is five times smaller than in neutral astaxanthin. This value reflects the larger energetic distance from the lowest excited state to the higher excited states than in the neutral molecule.  相似文献   

13.
The activation of adsorbed CO is an important step in CO hydrogenation. The results from TPSR of pre-adsorbed CO with H2 and syngas suggested that the presence of H2 increased the amount of CO adsorption and accelerated CO dissociation. The H2 was adsorbed first, and activated to form H* over metal sites, then reacted with carbonaceous species. The oxygen species for CO2 formation in the presence of hydrogen was mostly OH^*, which reacted with adsorbed CO subsequently via CO^*+OH^* → CO2^*+H^*; however, the direct CO dissociation was not excluded in CO hydrogenation. The dissociation of C-O bond in the presence of H2 proceeded by a concerted mechanism, which assisted the Boudourd reaction of adsorbed CO on the surface via CO^*+2H^* → CH^*+OH^*. The formation of the surface species (CH) from adsorbed CO proceeded as indicated with the participation of surface hydrogen, was favored in the initial step of the Fischer-Tropsch synthesis.  相似文献   

14.
Homobimetallic vanadium(V) complex of the composition [(CH3)2NH2+]2[(VO2)2(sloxCl)].4H2O was synthesized from the reaction of V2O5 with bis(5‐chlorosalicylaldehyde)oxaloyldihydrazone ligand in a 1:1 molar ratio in methanol. The structure of the complex was established by X‐ray crystallography. Reactivity of the complex with H2O2 leads to bis (monooxidoperoxidovanadate(V)) [{VO(O2)}2(sloxCl)]2? formation and with HCl, oxidohydroxido complex of composition [(VO (OH)(sloxCl)]2? was formed. Binding interaction of the complex was also investigated toward protein (BSA) and it was found to be 2.21 x 108 M?1. The catalytic activity of the complex in the oxidation of alcohols and oxidative bromination of some organic substrates was also studied, and it showed a great potent as a catalyst.  相似文献   

15.
The crystal structure of Rb2V3P4O17 has been determined from single-crystal X-ray diffraction data. Rb2V3P4O17 crystallizes in the orthorhombic space group Pnma (No. 62) with a = 17.502(7), b = 7.292(2), c = 11.399(6) Å3, V = 1455(1) Å3, Z=4, R=0.0295, RW = 0.0320 for 1129 unique reflections with I > 2.5 σ(I). The structure contains intersecting tunnels where the Rb+ cations are located. The framework can be described as consisting of V2O10 units formed from one VO5 square pyramid and one VO6 octahedron sharing a corner, and infinite chains of corner-shared VO6 octahedra, which are linked in three dimensions by pyrophosphate groups. The structural formula is Rb2(VO)3(P2O7)2. A single-phase product can be obtained by heating appropriate amounts of Rb4V2O7, VO2, V, and P2O5 in an evacuated fused silica tube at 950°C. Powder magnetic susceptibility data confirm the presence of V4+ (d1) ions without magnetic ordering down to 3 K.  相似文献   

16.
The reaction of [VO(OPr)3] (Pr is n-propyl) with hexamethyldisylthiane Me3SiSSiMe3 in the presence of β-diketones (acetylacetone (HAcac), hexafluoroacetylacetone (Hfac), and dipivaloylmethane (Dpm)), is studied. In all cases, vanadium(IV) and vanadium(III) β-diketonate complexes of different types are formed. New crystalline modification [V(Acac)3] is obtained in the reaction with HAcac. The mixedligand vanadium(III) complex of the composition [V2(Hfac)2(μ-OPr)]2 is formed with Hfac. In the presence of Dpm, the known vanadium(IV) complex [V2O2(Dpm)2(μ-OPr)2] is obtained in which two vanadyl groups VO2+ are linked by two bridging propoxy groups. The structures of all products are determined by X-ray diffraction analysis.  相似文献   

17.
Extended x-ray-absorption fine structure and scanning electron microscopy have been applied to the structure of the vanadium oxide layers on impregnated and grafted vanadium aerosils. When aerosil is impregnated with NH4VO3 solution, V2O5 crystals are formed; when vanadium is grafted by reacting the oxychloride with carrier OH groups, there are no visible crystals. On the other hand, the EXAFS spectra for the grafted specimens show all the oscillations found for crystalline V2O5. It is concluded that the vanadium oxide layers in these grafted materials have a long-range order similar to that in V2O5 and contain microcrystals having sizes up to 5 nm.Translated from Teoreticheskaya i Éksperimental'naya Khimiya, Vol. 23, No. 5, pp. 652–655, September–October, 1987.  相似文献   

18.
The interaction of the VO2+ and P2O 7 4– ions in aqueous solutions has been studied by conductometric and potentiometric titration methods. The formation of the species [VO(P2O7)2]6–, [VOP2O7]2– and (VO)2P2O7 could be clearly established.
  相似文献   

19.
Blue-coloured gels have been prepared in the VO2-SiO2 system up to 80 mol% VO2 by sol-gel technology using TEOS and aqueous solutions of VOSO4·5H2O. It is established by means of VIS and ESR spectra that at low temperatures VO2+ complexes are formed. An oxidation of V4+ has taken place with increasing temperature, and V2O5 and cristobalite have been separated. Silica gel glasses stable up to 800°C have been obtained from gels containing 1–3 mol% VO2.  相似文献   

20.
Spectrophotometric studies of the reaction between vanadium(V) ions and phenylfluorone are presented and used for spectrophotometric determination of vanadium(V). The absorbance at 520 nm obeys Beer's law in the range of 2–15 μg vanadium/10 ml at pH 4. The relative standard deviation is 2% and the molar absorptivity based on vanadium is 2.1 × 104 liters/mol cm. The composition of the complex in solution is of the 1:1 type with stability constant values to 2.5 × 104. Analysis of the solid complex shows that its formula agrees with the formula (C19 H11 O5)VO2 · 5H2O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号