首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R. A. Ganeev 《Laser Physics》2008,18(9):1009-1015
Nanoparticle-containing media can be used for the efficient high-order harmonic generation (HHG) of laser radiation in the extreme ultraviolet range. We review the results of recent studies of the HHG in laser-produced plasmas containing Ag, Au, Pd, Pt, Ru, GaN, BaTiO3, and SrTiO3 nanoparticles. The harmonics of femtosecond radiation up to the 55th order were achieved using the nanoparticle-containing plumes, when the femtosecond radiation propagated through the preformed plasma. These results are compared with the high-order harmonics generated from the plasma produced on the surface of bulk targets at different delays between the subnanosecond heating prepulse and femtosecond pulse. We discuss a six-fold enhancement of the HHG yield, which was achieved in the case of nanoparticle-containing plumes with regard to the monoparticle-containing plasmas.  相似文献   

2.
We analyze the interference between two processes of higher harmonic generation (HHG) in plasma containing mixtures of different materials (silver and gold nanoparticles, as well as graphite and boron). We find that, for mixtures and individual ingredients, the limiting orders of generated harmonics of laser radiation approximately coincide with one another. At the same time, for plasma torches formed by the ablation of mixtures of materials, the HHG efficiency is considerably reduced compared to the case of the frequency transformation of laser radiation in individual ingredients of these mixtures as a result of destructive interference in the former case. We demonstrate a considerable spectral broadening of harmonics generated in laser plasma with pulses passed through filaments formed in air. In this case, the HHG efficiency increases fourfold (from 3 × 10−6 to 1.2 × 10−5) compared to the case of radiation free of phase and frequency modulation. The generation of harmonics is also observed upon the passage of 120-fs laser pulses through plasma containing fullerenes. In this case, the limiting value of generated harmonics achieves the 33rd order. The efficiency of harmonics in fullerene plasma considerably exceeds a similar process in silver plasma.  相似文献   

3.
This work reviews a series of investigations of different plasma plumes using single- and two-color laser systems that emit femtosecond pulses with a 10-Hz repetition rate. Results of investigation of the resonant enhancement of harmonics in tin plasma with the use of two types of pumps are analyzed, and it is shown that the tuning of the wavelengths of harmonics to ion-resonance levels plays an important role in increasing the conversion efficiency to high-order harmonics of the radiation to be converted. Investigations of different carbon-containing plasma media (carbon nanotubes, graphite, carbon aerogel, etc.) exhibit attractive properties of the nonlinear medium of this type for efficient generation of high-order harmonics. The results of the first experiments on the use of nanoparticles produced directly in the course of laser ablation of metals for increasing the efficiency of harmonics generated in this cluster-containing medium are analyzed. It is shown that new approaches realized in these investigations give hope that the nonlinear optical response of plasma media in the far-ultraviolet range can be further increased.  相似文献   

4.
The frequency conversion of laser radiation in plasma created by pulses of different durations under conditions of the chirp variation of the radiation to be converted is investigated. It is shown that the chirp variation of the laser pulse during the generation of higher-order radiation harmonics of the femtosecond laser leads to a considerable change in the brightness, wavelength shift, and maximal order of generated harmonics. The long-and short-wavelength shifts of harmonics observed in these studies are attributed to the manifestation of a considerable concentration of free charge carriers in the plasma, as well as the self-modulation of the laser pulse. The generation of plasma by pulses whose durations vary from 160 fs to 20 ns is considered and it is shown that the generation efficiency of harmonics depends to a greater extent on the energy of the heating prepulse than on its intensity on the surface of a target to be ablated. The effect that the atomic number of the target has on the formation of optimal plasma at different delays between the heating prepulse and the femtosecond pulse to be converted is discussed.  相似文献   

5.
The wavelength conversion of femtosecond laser pulses in laser plasmas containing clusters of different nature and dimension (fullerenes, metal nanoparticles) is studied. Pulses of a titanium-sapphire laser are used in combination with orthogonally polarized second-harmonic pulses as radiation to be converted. Variations in the generation efficiency of higher harmonics are analyzed under conditions of phase-modulated pulses. It is shown that the optimization of components of a nonlinear optical plasma medium, of plasma excitation conditions by single- and two-color pumps, and of phase and spectral parameters of radiation to be converted leads to a considerable increase in the generation efficiency of higher harmonics.  相似文献   

6.
R. A. Ganeev 《Laser Physics》2012,22(7):1177-1188
Recent studies of high-order harmonic generation of laser radiation in laser-produced plasma show new attractive developments in this field. Those include generation of extended harmonics in plasma plumes, new approaches in application of two-color pump, generation of extremely broadened harmonics, further developments in harmonic generation in clusters (fullerenes, carbon nanotubes, in-situ produced nanoparticles), destructive interference of harmonics from different emitters, resonance-induced enhancement of harmonics, applications of high pulse repetition rate lasers for the enhancement of average power of generating harmonics, observation of quantum path signatures, etc. We review some of these recent developments.  相似文献   

7.
We report on single-pass high-harmonic generation (HHG) with amplified driving laser pulses at a repetition rate of 20.8?MHz. An Yb:YAG Innoslab amplifier system provides 35?fs pulses with 20?W average power at 1030?nm after external pulse compression. Following tight focusing into a xenon gas jet, we observe the generation of high-harmonic radiation of up to the seventeenth order. Our results show that state-of-the-art amplifier systems have become a promising alternative to cavity-assisted HHG for applications that require high repetition rates, such as frequency comb spectroscopy in the extreme UV.  相似文献   

8.
Relativistic laser-plasma interaction results in new sources of short-pulsed x-ray radiation. Here we consider two options. The first one is betatron radiation of electrons accelerated in underdense plasmas and oscillating in transverse fields of the laser wake. This radiation is incoherent and broadband, the pulse duration is comparable with that of the driving laser. The second option is the high harmonic generation (HHG) from overdense plasma surfaces. This radiation is coherent. The relativistic high harmonics are phase locked and emerge in the form of (sub-)attosecond pulses. One- and three-dimensional regimes of relativistic HHG from overdense plasmas are considered.  相似文献   

9.
The generation of lower (third) and higher harmonics of femtosecond laser radiation in plasmas produced by laser ablation of different targets with a small atomic number Z (B, Be, Li) has been investigated. The high (10−3) efficiency of third-harmonic generation was observed in plasma produced on the boron surface. Efficient third-harmonic generation was also observed in beryllium plasma using femtosecond pulses of Ti:sapphire laser radiation (λ = 790 nm) and its second harmonic (395 nm). We could tune the higher harmonics generation spectrum by tuning the crystal converter when using 395-nm radiation to be converted. It is shown that, in plasmas formed on targets with small Z, the conversion efficiency and limiting generated harmonic order depend on the delay between the ablation pulse and the pulse to be converted.  相似文献   

10.
We present a method for the creation of stable weakly ionized plasmas from laser ablation of solid targets using a 1 kHz pulse repetition rate laser, which can be used for stable high-order harmonic generation from plasma plumes. The plasma plumes were generated from cylindrical rotating targets. Without target rotation the intensity of harmonics in the 40-80 nm range drops by more than one order of magnitude during less than 10(3) shots, while, with rotation of the target at typically 30 revolutions per minute, stable emission of high-order harmonics from aluminum plasma plumes with variation of less than 10% was maintained for >10(6) laser shots.  相似文献   

11.
Harmonics with the photon energy of up to ~150 eV were studied using extended ablation plumes as the nonlinear media. The application of the ablation pulses of different duration covering the range between a few tens of femtoseconds and a few tens of nanoseconds revealed the advanced features of the extended plasmas produced by the subnanosecond pulses for efficient harmonic generation. The examples of the quasi-phase-matching of a group of harmonics in the plateau range and the advantages of using the two-color pump and cluster-containing plasmas are presented. We analyze the spatial and coherence characteristics of the high-order harmonics produced during propagation of the 64 fs pulse through the extended plasma plume produced by 370 ps pulses. It is shown that the divergence of plasma harmonics in the plateau range is 7 times smaller than the divergence of the driving radiation used for high-order harmonic generation. The measurements of the coherence properties of the lower-order harmonics showed that the visibility of interference fringes in the far field was in the range of 0.54–0.73.  相似文献   

12.
理论研究了电荷共振增强电离和离解电离在H~+_2谐波辐射中的贡献.结果表明:在少周期激光场下,谐波辐射只由电荷共振增强电离贡献产生,谐波光谱呈规则的奇次谐波.在多周期激光场下,谐波辐射由电荷共振增强电离和离解电离共同贡献产生,但是电荷共振增强电离在谐波辐射中起主要作用.并且低阶谐波呈现偶次谐波.最后,通过分析含时核运动,电离几率以及谐波辐射时频分析图解释了少周期和多周期激光场驱动H~+_2辐射谐波的过程.  相似文献   

13.
蔡怀鹏  高健  李博原  刘峰  陈黎明  远晓辉  陈民  盛政明  张杰 《物理学报》2018,67(21):214205-214205
超短超强激光与固体靶表面等离子体相互作用可以通过高次谐波的方式产生从极紫外到软X射线波段的相干辐射,获得飞秒甚至阿秒量级的超短脉冲,可用于观测原子或分子中的电子运动等超快动力学过程.本文实验研究了相对论圆偏振飞秒激光与固体靶相互作用的高次谐波产生过程,实验结果表明,在较大入射角下,圆偏振激光也可以有效地产生高次谐波辐射.通过预脉冲控制靶表面的预等离子体密度标长,发现高次谐波的产生效率随密度标长的增加而单调下降.进一步通过二维粒子模拟程序,分析了激光的偏振以及预等离子体密度标长对高次谐波产生的影响,很好地解释了实验观测结果.  相似文献   

14.
The results of investigation of the higher harmonics (from the 21st to the 61st order) of radiation of a femtosecond laser (793 nm, 48 fs) that are generated in silver plasma are presented. The changes in the shape and spectra of harmonics for different chirps of the laser radiation are studied. It is found that the wavelengths of harmonics generated in the region of the plateaulike distribution of the converted radiation intensity can be tuned. It is shown that the conditions of phase matching between harmonics and laser radiation are different for different modulations of the femtosecond pulse spectrum. The tuning range of the spectrum of the converted radiation in the region of lower harmonics, which lie in the beginning region of the plateau, is shown to amount to 0.8 nm.  相似文献   

15.
ABSTRACT

High harmonic generation (HHG) is sensitive to the carrier envelope phase (CEP) of its driving laser field if it is a sufficiently short pulse (several-cycle pulse). Here we show that strong CEP effects can also be found in HHG from long duration multi-cycle pulses (up to 200?fs at 800?nm central wavelength). We find that HHG from multi-cycle pulses may be CEP dependent when the driving pulse exhibits two distinct timescales (multi-timescale pulse): (i) a short timescale associated with the average frequency, and (ii) a long timescale associated with the pulse’s temporal periodicity. The interplay of these timescales results in significant changes to both the cutoff frequency, and the appearance of symmetry allowed harmonics in the spectrum as function of CEP, similar to HHG from several-cycle pulses. We relate this effect to the multi-timescale intensity variations in the driving pulse, and construct an analytical condition to access the phenomenon. Lastly, we numerically demonstrate reconstruction of the CEP through HHG from long duration multi-timescale pulses. Our work may be useful in several areas of strong-field physics and attosecond science, for example, allowing spectroscopy of multi-timescale processes (e.g. HHG from vibrationally active media), and paving the way towards CEP characterisation using long pulses.  相似文献   

16.
The studies of coherence properties of the harmonics generating in laser-produced plasmas, the analysis of the optical nonlinearities of deoxyribonucleic acid components, the resonance enhancement of harmonic in the cases of excitation of indium plasma by multi- and few-cycle pulses, and the application of nanoparticle-based emitters of harmonics using high-pulse repetition rate lasers are reviewed. The analysis of various aspects of plasma harmonic generation at the conditions of optimal excitation of the ablated targets irradiating by 1 kHz lasers is presented. The growth of plasma harmonic conversion efficiency, single harmonic emission, nonlinear spectroscopy of complex organic components, as well as high coherency of harmonic radiation show the advantages of using plasma harmonic technique for optimization of the sources of coherent extreme ultraviolet radiation and for the material science studies. These studies allowed a significant growth of the average power of harmonics compared with the case of 10 Hz lasers.  相似文献   

17.
A copper-vapor laser the lasing medium of which is pumped by damped sine voltage pulses is studied experimentally. It is shown that this laser can operate at megahertz lasing pulse repetition rates. Each current pulse in a train of damped sine excitation pulses generates a lasing pulse. The time between lasing pulses is no more than 224 ns, which corresponds to a lasing pulse repetition rate of more than 4.5 MHz. According to estimates, the use of the megahertz sine voltage to excite the copper-vapor laser may raise the specific power of laser radiation by at least an order of magnitude at an efficiency of ≈15%.  相似文献   

18.
通过数值求解双色激光场(基频场和二倍频场)与一维晶体相互作用的含时薛定谔方程,研究了晶体在双色激光脉冲驱动下发射高次谐波的特点.研究结果表明,晶体在双色激光脉冲驱动下发射的高次谐波第二平台强度相对于单色激光脉冲驱动下有显著提高,且随双色激光脉冲的相位差明显变化.进一步的研究发现,在双色激光脉冲其它参数保持不变的情况下,通过调节双色激光脉冲的相位差就能有效提高晶体发射高次谐波第二平台的产额,提高的幅度会随激光脉冲的宽度有所不同.  相似文献   

19.
汤君华  王云才 《中国物理快报》2006,23(10):2756-2758
Theoretical analysis and experimental measurement of pulse-width fitter of diode laser pulses are presented. The expression of pulse power spectra with all amplitude jitter, timing jitter and pulse-width jitter is deduced. The power spectra with and without pulse-width fitter are that the pulse-width jitter will contribute considerably numerically simulated. The simulation results indicate noise to the pulse power spectrum while the product of pulse width and angular frequency is larger than 1. The experimental measurement of pulse-width fitter of a gain-switched Fabry-Perot laser diode with 2.4 GHz repetition rate is also reported. In comparison of the noise power spectra of the first, fourth and seventh harmonics of the pulse repetition rate, 2.3ps pulse-width jitter is obtained.  相似文献   

20.
The energies of a shock wave generated in different metals under irradiation by a high-power laser beam were determined experimentally. The experiments were performed with the use of targets prepared from a number of metals, such as aluminum, copper, silver and lead (which belong to different periods of the periodic table) under irradiation by pulses of the first and third harmonics of the PALS iodine laser at a radiation intensity of approximately 1014 W/cm2. It was found that, for heavy metals, like for light solid materials, the fraction of laser radiation energy converted into the energy of a shock wave under irradiation by a laser pulse of the third harmonic considerably (by a factor of 2–3) exceeds the fraction of laser radiation energy converted under irradiation by a laser pulse of the first harmonic. The influence of radiation processes on the efficiency of conversion of the laser energy into the energy of the shock wave was analyzed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号