首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 467 毫秒
1.
This paper deals with the gravitational instability of an infinite homogeneous viscous rotating plasma of finite electrical conductivity in the combined presence of effects of Hall currents, finite Larmor radius (FLR) and thermal conductivity. The ambient magnetic field is assumed to be uniform and acting along the vertical direction. Both longitudinal and transverse modes of wave propagation have been studied. It is shown that Jean's criterion determines the gravitational instability even in the presence of the effects of thermal conductivity, viscosity, finite electrical conductivity, FLR, rotation and Hall currents. Further it is found that while FLR, viscosity and rotation have a stabilizing influence, both the thermal and the electrical conductivities have a destabilizing influence on the gravitational instability of a plasma.  相似文献   

2.
R C Sharma  J N Misra 《Pramana》1987,29(1):79-86
The effects of compressibility, finite Larmor radius (FLR) and Hall currents are considered on the thermal instability of a plasma in the presence of a uniform horizontal magnetic field. For stationary convection, the compressibility has a stabilizing effect whereas FLR and Hall currents have stabilizing as well as destabilizing effects. For (C pβ/g)<1, the system is stable. The magnetic field, FLR and Hall currents introduce oscillatory modes in the system for (C pβ/g)>1.  相似文献   

3.
The dynamic instability in a horizontal layer of a rotaing compressible plasma of variable density has been investigated to examine the influence of the simultaneous presence of the effects of Hall currents and finite magnetic resistivity. The linearized stability analysis has been carried out through the normal mode technique. By making use of the existence of a variational principle which is shown to characterize the problem, proper solutions have been obtained for a semiinfinite plasma in which there is an exponential density gradient along the vertical. The dispersion relation obtained has been solved numerically and it is found that both the resistivity and the Hall currents have a destabilizing influence as the growth rate of the unstable disturbances increases with increasing values of the parameters characterizing these effects. On the other hand, the Coriolis forces are found to have a stabilizing influence for in this case the growth rate decreases with increasing rotation.  相似文献   

4.
R C Sharma  K C Sharma 《Pramana》1978,10(3):267-272
The thermal instability of a finitely conducting hydromagnetic composite and compressible medium is studied to include the frictional effects with neutrals. The effect of compressibility is found to be stabilizing. In contrast to the nonoscillatory modes for (C p/g)β > 1 in the absence of a magnetic field;C v, β andg being specific heat at constant pressure, uniform adverse temperature gradient and acceleration due to gravity respectively, the presence of magnetic field introduces oscillatory modes in the system. The overstable case is also discussed. The magnetic field is found to have a stabilizing effect on the system for (C p/g)β > 1.  相似文献   

5.
The instability of a stratified rotating fluid layer through porous medium in the presence of an inhomogeneous magnetic field is investigated. For exponentially varying density and magnetic field variations, an eigenvalue solution has been obtained. The dispersion relation is obtained and discussed for both the stable and unstable stratifications separately. It is found, for non-porous medium, that for the stable mode of disturbance, the system is always stable, and for the unstable mode of disturbance, it is stabilized only under a certain condition for the Alfvèn velocity, rotation and the stratification parameter. In the latter case, both rotation and magnetic field are found to have a stabilizing effect on the growth rate. In the presence of porous medium, it is found, for real growth rate n, that the inhomogeneous magnetic field has always a stabilizing effect on the considered system. It is found also, for complex growth rate n, that the system is stable for the stable stratification case, while it is stable or unstable for the unstable case under a certain wavenumbers range depending on the Alfvèn velocity and the stratification parameter. The presence of the magnetic field is found to stabilize a certain wavenumbers band, whereas the system was unstable for all wavenumbers in the absence of the magnetic field. Also, the presence of porous medium is found to hide the stabilizing effect played by rotation on the considered system for non-porous medium, i.e., rotation does not have any significant effect on the stability criterion in this case.  相似文献   

6.
The combined influence of the effects of Hall currents, magnetic resistivity and viscosity have been studied on the gravitational instability of a thermally conducting homogeneous unbounded plasma in an oblique magnetic field. The solution has been obtained through the normal mode technique and the dispersion relation has been derived. It is shown that the Jeans' criterion for gravitational instability remains unchanged. Solving numerically the dispersion relation, the dependence of the growth rate of the gravitational unstable mode on the considered physical effects has been obtained for an astrophysical situation. For conditions prevailing in the magnetized collapsing clouds, the numerical calculations for the plot of growth rate against wave number has been obtained for several values of the parameters characterizing Hall currents magnetic resistivity viscosity thermal conductivity. It is found that magnetic resistivity and thermal conductivity have destabilizing influence while viscosity has stabilizing influence on the instability of the plasma of disturbance m(ϱ) = 9 × 10−3 kg.  相似文献   

7.
We have studied the effect of rotation on the development of Rayleigh-Taylor instability of an incompressible, viscous, Hall, finitely conducting plasma of variable density. The solution is developed, through variational methods, for a semi-infinite plasma in which the density varies exponentially along the vertical. It is found that the system is unstable for all wave numbers when the effects of magnetic resistivity are included. The effects of coriolis forces and viscosity on the growth rate of the unstable system are found to be stabilizing while that of Hall currents is destabilizing. Finite conductivity affects the growth rate of the unstable mode differently for the smaller and larger values of the wave numbers, destabilizing for the waves of large wave length and stabilizing for waves of small wave length.  相似文献   

8.
The characteristics of turbulent flow in a cylindrical Rayleigh–Bénard convection cell which can be modified considerably in case rotation is included in the dynamics. By incorporating the additional effects of an Euler force, i.e., effects induced by non-constant rotation rates, a remarkably strong intensification of the heat transfer efficiency can be achieved. We consider turbulent convection at Rayleigh number Ra = 109 and Prandtl number σ = 6.4 under a harmonically varying rotation, allowing complete reversals of the direction of the externally imposed rotation in the course of time. The dimensionless amplitude of the oscillation is taken as 1/Ro* = 1 while various modulation frequencies 0.1 ≤ Roω ≤ 1 are applied. Both slow and fast flow-structuring and heat transfer intensification are induced due to the forced flow reversals. Depending on the magnitude of the Euler force, increases in the Nusselt number of up to 400% were observed, compared to the case of constant or no rotation. It is shown that a large thermal flow structure accumulates all along the centreline of the cylinder, which is responsible for the strongly increased heat transfer. This dynamic thermal flow structure develops quite gradually, requiring many periods of modulated flow reversals. In the course of time, the Nusselt number increases in an oscillatory fashion up to a point of global instability, after which a very rapid and striking collapse of the thermal columnar structure is seen. Following such a collapse is another, quite similar episode of gradual accumulation of the next thermal column. We perform direct numerical simulation of the incompressible Navier–Stokes equations to study this system. Both the flow structures and the corresponding heat transfer characteristics are discussed at a range of modulation frequencies. We give an overview of typical time scales of the system response.  相似文献   

9.
The Rayleigh-Taylor instability of an incompressible viscous, finitely conducting, rotating plasma of variable density has been investigated in the presence of the effects of Hall currents and finite ion Larmor radius. The proper solution for a semi-infinité plasma layer having exponentially varying density in the vertical direction has been obtained by making use of a variational principle which is shown to characterize the problem. The dispersion relation has been solved numerically. It is found that gyroviscosity, viscosity and coriolis forces have stabilizing influence whereas Hall currents and resistivity have a destabilizing influence.  相似文献   

10.
Summary  The MHD stability of a liquid jet (radiusR 0 and density ϱ) under the influence of self-gravitating force has traditionally been studied using a normal-mode type of analysis. The dispersion relation is obtained and studied analytically and numerically. The axial magnetic fields inside and outside the jet have always stabilizing effects. The transverse magnetic field has a destabilizing effect. It is found that the largest doman of instability is fastly shrinking (as α> ?) with increasingH 0 /H G values,H G 4(4πGϱ2 R 2 0 μ)1/2, whereG is the gravitational constant. Some reported works are recovered as limiting cases from the present work.  相似文献   

11.
The instability in a stratified layer of a self-gravitating partially ionized plasma has been studied in the presence of effects of Hall currents. For a plasma permeated by a uniform vertical magnetic field, the dispersion relation has been obtained through variational method. It is found that the Hall currents have a destabilizing effect while the neutral gas frictional effects have a stabilizing influence.  相似文献   

12.
The gravitational instability of infinite homogeneous plasma has been studied to include simultaneously the effects of rotations, Hall currents, viscosity, finite electrical conductivity and the finite Larmor radius (FLR). Both the longitudinal, and transverse modes of wave propagation have been studied. It is found that the gravitational instability is determined by Jeans' criterion even in the presence of effects of rotation, Hall currents, FLR, viscosity and finite conductivity whether included separately or jointly.  相似文献   

13.
The first results obtained in studies of the temperature dependences of electrical conductivity and Hall constant of n-CdGeAs2 single crystals prepared by low-temperature crystallization are reported. It has been established that the method developed permits growing single crystals with a free-electron concentration ⋍(1−2)×1018 cm−3 and a Hall mobility ⋍10000 cm2/(Vs) at T=300 K. It is shown that the temperature dependence of Hall mobility exhibits a behavior characteristic of electron scattering by lattice vibrations, whereas below 150 K a deviation from this law is observed to occur evidencing an increasing contribution of static lattice defects to scattering. The Hall mobility in the crystals prepared was found to reach ⋍36000 cm2/(Vs) at 77 K. Photosensitive heterojunctions based on n-CdGeAs2 single crystals were prepared. The spectral response of the photosensitivity of these structures is analyzed. It is concluded that this method is promising for preparation of perfect CdGeAs2 crystals. Fiz. Tverd. Tela (St. Petersburg) 41, 1190–1193 (July 1999)  相似文献   

14.
The frictional effect of collisions of ionized with neutral atoms on the Rayleigh-Taylor instability of a composite medium with variable viscosity is considered in the presence of a horizontal magnetic field. It is found that the simultaneous presence of viscosity, magnetic field and collisions has a stabilizing effect and completely stabilizes the wave-number bandk * wherek *=(k x 2 V2L/g). The collisions have no effect as such on the stratification, i.e., stable configuration remains stable and unstable configuration remains unstable. However the growth rate, under either of conditions (25), decreases with the increase of collisions.  相似文献   

15.
A linear analysis of the combined effect of viscosity, finite ion Larmor radius and suspended particles on Kelvin-Helmholtz instability of two superposed incompressible fluids in the presence of a uniform magnetic field is carried out. The magnetic field is assumed to be transverse to the direction of streaming. A general dispersion relation for such a configuration has been obtained using appropriate boundary conditions. The stability analysis is discussed analytically, and the obtained results are numerically confirmed. Some special cases are recovered and corrected. The limiting cases of absence of suspended particles (or fluid velocities) and finite Larmor radius, absence of suspended particles are discussed in detail. In both cases, all other physical parameters are found to have stabilizing as well as destabilizing effects on the considered system. In the former case, the kinematic viscosity is found to has a stabilizing effect, while in the later case, the finite Larmor radius is found to has a stabilizing influence for a vortex sheet. It is shown also that both finite Larmor radius and kinematic viscosity stabilizations for interchange perturbations are similar to the stabilization effect due to a magnetic field for non-interchange perturbations. Received 13 January 2003 Published online 24 April 2003 RID="a" ID="a"Also at: Department of Mathematics, Faculty of Education, Ain Shams University, Roxy, Cairo, Egypt. e-mail: m.elsayed@uaeu.ac.ae  相似文献   

16.
<正>We have applied Maxwell’s equations to study the physics of quantum Hall’s effect.The electromagnetic properties of this system are obtained.The Hall’s voltage,VH = 2πh2ns/em,where ns is the electron number density,for a 2- dimensional system,and h = 2πh is the Planck’s constant,is found to coincide with the voltage drop across the quantum capacitor.Consideration of the cyclotronic motion of electrons is found to give rise to Hall’s resistance. Ohmic resistances in the horizontal and vertical directions have been found to exist before equilibrium state is reached. At a fundamental level,the Hall’s effect is found to be equivalent to a resonant LCR circuit with LH = 2πm/e2ns and CH = me2/2πh2ns satisfying the resonance condition with resonant frequency equal to the inverse of the scattering (relaxation) time,τs.The Hall’s resistance is found to be RH =((LH)/CH1/2.The Hall’s resistance may be connected with the impedance that the electron wave experiences when it propagates in the 2-dimensional gas.  相似文献   

17.
The nonlinear resistive properties of superconductors in the mixed state in the presence of a system of unidirectional planar defects (twins) have been investigated theoretically within the framework of the two-dimensional stochastic model of anisotropic pinning based on the Fokker-Planck equations with a concrete form of the pinning potential. These equations allow one to obtain an exact analytical solution of the problem. Formulas are obtained for experimentally observable even and odd (relative to reversal of the direction of the external magnetic field) nonlinear longitudinal and transverse magnetoresistivities ρ ‖,⊥ ± ( j,t,α,ε) as functions of the transport current density j, temperature t, the angle α between the directions of the current and the twins, and the relative volume fraction ε occupied by the twins. In light of the great variety of types of nonlinear resistive dependences contained in these expressions for ρ ‖,⊥ ± the most characteristic of them are presented in the form of graphs with commentary. The desired nonlinear dependences ρ ‖,⊥ ± are linear combinations of the even and odd parts of the function v(j,t, α,ε), which has the sense of the probability of overcoming the potential barrier of the twins; this makes it possible to give a simple physical treatment of the nonlinear regimes. New scaling relations for the Hall conductivity are obtained and investigated which differ from the previously known relations for isotropic pinning. The interaction of vortex motion directed along the twins and the Hall effect is considered for Hall constants which are arbitrary in magnitude and sign, and it is shown that in the case of small Hall viscosity vortex motion directed along the twins has an effect on the odd magnetoresistivities ρ and ρ , whereas the reverse effect can be neglected. It is shown that pinning anisotropy is sufficient to manifest the new nonlinear (in the current) magnetoresistivities ρ + and ρ . Zh. éksp. Teor. Fiz. 116, 2103–2129 (December 1999)  相似文献   

18.
The field effect in i-InP-based heteronanostructures has been studied in InP and In0.52Al0.48As layers with an In x Ga1?x As quantum well with a high Hall electron mobility in the frequency range of (20?2) × 106 Hz and temperature range of 77?C450 K. It is shown that mobility in the field effect depends on the location of Si ??-doped areas with respect to the quantum well and on the doping level. The ??-doping level and the configurations of nanostructures have been determined for the case in which the values of the electron mobility in the field and Hall effects are close to each other and correspond to high values of mobility in the quantum well.  相似文献   

19.
An infinitely extending homogeneous, self-gravitating rotating magnetized plasma flowing through a porous medium has been considered under the influence of Finite Larmor Radius (FLR) and other transport phenomena. A general dispersion relation has been derived through the linearized perturbation equations. Longitudinal and transverse modes of propagation have been discussed for the rotation with axis parallel and perpendicular to the magnetic field. The joint influence, of the aforesaid parameters, does not essentially change the Jeans' criterion of instability but modifies the same. The adiabatic sonic speed has been replaced by the isothermal one due to the thermal conductivity. It is further observed that the FLR corrections have stabilizing effect for an inviscid, non-rotating plasma, in case of transverse propagation. Rotation decreases the Larmor radius, whereas the porosity reduces the effects of rotation, FLR, and the magnetic field. Viscosity removes the effects of both, the roation, and the FLR corrections.  相似文献   

20.
The stability by Lyapunov of the circular motion of spinning test bodies in a Lense-Thirring field has been investigated. For Papapetrou's equations the generalized supplementary conditionsS oi U o =kS ij U j ,k=const.,i, j = 1, 2, 3 have been chosen. Four of the first integrals of motion have been indicated. The existence, stability, and instability regions have been found. It is shown that the positions of stability and instability ranges depend considerably upon the type of supplementary conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号