首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crystal Structure of Bis[lithium-tris(trimethylsilyl)hydrazide] and Reactions with Fluoroboranes, -silanes, and -phospanes Tris(trimethylsilyl)hydrazine reacts with n-butyllithium in n-hexane to give the lithium-derivative 1 . The reaction of 1 with SiF4, PhSiF3, BF3 · OEt2, F2BN(SiMe3)2 and PF3 leads to the substitution products 2–6 . The 1,2-diaza-3-bora-5-silacyclopentane 7 is formed by heating (Me3Si)2N? N(SiMe3)(BFNSiMe3)2 ( 5 ) at 250°C. In the reaction of (Me3Si)2N? N(SiMe3)PF2 ( 6 ) with lithiated tert.-butyl(trimethylsilyl)amine the hydrazino-iminophosphene (Me3Si)2N? N = P? N(SiMe3)(CMe3) ( 8 ) is obtained. In the molar ratio 2:1 1 reacts with SiF4 and BF3 · OEt2 to give bis[tris(trimethylsilyl)hydrazino]silane 9 and -borane 10 .  相似文献   

2.
Preparation and Some Properties of Silyl Derivatives of Hyponitrous Acid and of its Amides Bis(trimethylsilyl)hyponitrite Me3SiO? N?N? OSiMe3 ( 1 ) is formed by reaction of Ag2N2O2 with Me3SiCl and of (Me3Si)2NOLi with SO2Cl2. Tris(trimethylsilyl)-1-hydroxytriazen ( 2 ) is formed by reaction of (Me3Si)3N2Li and i-amyl nitrite. The thermolysis of 1 leads to nitrogen, trimethylsilanol, and hexamethyldisiloxane, the thermolysis of 2 leads to hexamethyldisiloxane and trimethylsilylazide. HO? N?N? NH2 could not be isolated as a product of protolysis of 2. 2 is converted into LiO? N?N? N(SiMe3)2 ( 4 ) by LiNR2 (R = Me, SiMe3), 4 is converted into MeO? N?N? N(SiMe3)2 ( 5 ) by Me2SO4. The thermolysis of 4 leads to LiN3 and (Me3Si)2O, the thermolysis of 5 leads to Me3SiN3 and Me3SiOMe.  相似文献   

3.
The Reaction Behaviour of Lithiated Aminosilanes RR′Si(H)N(Li)SiMe3 The bis(trimethylsilyl)aminosubstituted silances RR′Si(H)N(SiMe3)2 11 – 16 (R,R′ = Me, Me3SiNH, (Me3Si)2N) are obtained by the reaction of the lithium silylamides RR′Si(H)N(Li)SiMe3 1 – 10 (R,R′ = Me3SiNLi, Me, Me3SiNH, (M3Si)2N) with chlorotrimethylsilane in the polar solvent tetrahydrofurane (THF). In the reaction of the lithium silylamides [(Me3Si)2N]2(Me3SiNLi)SiH 10 with chlorotrimethylsilane in THF the rearranged product 1,1,3-tris[bis(trimethylsilyl)amino]-3-methyl-1,3-disila-butane [(Me3Si)2N]2Si(H)CH2SiMe2N(SiMe3)2 17 is formed. The reaction of the lithium silyamides RR′ Si(H)N(Li)SiMe3 1 – 3 (1: R = R′ = Me; 2: R = Me, R′ = Me3SiNH; 3: R = Me, R′ = Me3SiNLi) with chlorotrimethylsilane in the nonpolar solvent n-hexane gives the cyclodisilazanes [RR′ Si? NSiMe3]2 18 – 22 (R = Me, Me3SiNH, (Me3Si)2N; R′ = Me, Me3SiNH, (Me3Si)2N, N(SiMe3)Si · Me(NHSiMe3)2) and trimethylsilane. The lithium silylamides 4 , 5 , 6 , 9 , 10 (4: R = R′ = Me3SiNH; 5: R = Me3SiNH, R′ = Me3SiNLi; 6: R = R′ = Me3SiNLi; 9: R = (Me3Si)2N, R ′ = Me3SiNLi; 10: R = R′ = (Me3Si)2N) shows with chlorotrimethylsilane in n-hexane no reaction. The crystal structure of 17 and 21 are reported.  相似文献   

4.
Synthesis and Properties of Partially Silylated Tri- and Tetraphosphanes. Reaction of Lithiated Diphosphanes with Chlorophosphanes The reactions of Li(Me3Si)P? P(SiMe3)(CMe3) 1 , Li(Me3Si)P? P(CMe3)2 2 , and Li(Me3C)P? P(SiMe3)(CMe3) 3 with the chlorophosphanes P(SiMe3)(CMe3)Cl, P(CMe3)2Cl, or P(CMe3)Cl2 generate the triphosphanes [(Me3C)(Me3Si)P]2P(SiMe3) 4 , (Me3C)(Me3Si)P? P(SiMe3)? P(CMe3)2 6 , [(Me3C)2P]2P(SiMe3) 7 , and (Me3C)(Me3Si)P? P(SiMe3)? P(CMe3)Cl 8 . The triphosphane (Me3C)2P? P(SiMe3)? P(SiMe3)2 5 is not obtainable as easily. The access to 5 starts by reacting PCl3 with P(SiMe3)(CMe3)2, forming (Me3C)2 P? PCl2, which then with LiP(SiMe3)2 gives (Me3C)2 P? P(Cl)? P(SiMe3)2 11 . Treating 11 with LiCMe3 generates (Me3C)2P? P(H)? P(SiMe3)2 16 , which can be lithiated by LiBu to give (Me3C)2P? P(Li)? P(SiMe3)2 13 and after reacting with Me3SiCl, finally yields 5 . 8 is stable at ?70°C and undergoes cyclization to P3(SiMe3)(CMe3)2 in the course of warming to ambient temperature, while Me3SiCl is split off. 7 , reacting with MeOH, forms [(Me3C)2P]2PH. (Me3C)2P? P(Li)? P(SiMe3)2 18 , which can be obtained by the reaction of 5 with LiBu, decomposes forming (Me3C)2P? P(Li)(SiMe3), P(SiMe3)3, and LiP(SiMe3)2, in contrast to either (Me3C)2P? P(Li)? P(SiMe3)(CMe3) 19 or [(Me3C)2P]2PLi, which are stable in ether solutions. The Li phosphides 1 , 2 , and 3 with BrH2C? CH2Br form the n-tetraphosphanes (Me3C)(Me3Si)P? [P(SiMe3)]2? P(SiMe3)(CMe3) 23 , (Me3C)2P? [P(SiMe3)]2? P(CMe3)2 24 , and (Me3C)(Me3Si)P? [P(CMe3)]2? P(SiMe3)(CMe3) 25 , respectively. Li(Me3Si)P? P(SiMe3)2, likewise, generates (Me3Si)2P? [P(SiMe3)]2? P(SiMe3)2 26 . Just as the n-triphosphanes 4 , 5 , 6 , and 7 , the n-tetraphosphanes 23 , 24 , and 25 can be isolated as crystalline compounds. 23 , treated with LiBu, does nor form any stable n-tetraphosphides, whereas 24 yields (Me3C)2P? P(Li)? P(SiMe3)? P(CMe3)2, that is stable in ethers. With MeOH, 24 , forms crystals of (Me3C)2P? P(H)? P(SiMe3)? P(CMe3)2.  相似文献   

5.
Investigations on the Formation of Silylated iso-Tetraphosphanes We investigated the formation of iso-tetraphosphanes by reacting [Me(Me3Si)P]2PCl 4 , Me(Me3Si)P? P(Cl)? P(SiMe3)2 8 , Me(Me3Si)P? P(Cl)? P(SiMe3)(CMe3) 9 , [Me(Me3Si)P]2PCl 20 , Me3C(Me3Si)P? P(Cl)? P(SiMe3)2 21 , and [MeC(Me3Si)P]2PCl 22 with LiP(SiMe3)Me 1 , LiP(SiMe3)2 2 , and LiP(SiMe3)CMe3 3 , respectively, to elucidate possible paths of synthesis, the influence of substituents (Me, SiMe3, CMe3) on the course of the reaction, and the properties of the iso-tetraphosphanes. These products are formed via a substitution reaction at the P2Cl group of the iso-triphosphanes. However, with an increasing number of SiMe3 groups in the triphosphane as well as in reactions with LiP(SiMe3)Me, cleaving and transmetallation reactions become more and more important. The phosphides 1,2, and 3 attack the PC1 group of 4 yielding the iso-tetraphosphanes P[P(SiMe3)Me]3 5, [Me(Me3Si)P]2P? P(SiMe3)2 6 and [Me(Me3Si)P]2P? P(SiMe3)CMe3 7. I n reactions With 8 and 9, LiP(SiMe3)Me causes bond cleavage and mainly leads to Me(Me3Si)P? P(Me)? P(SiMe3)2 13 and Me(Me3Si)P? (Me)? P(SiMe3)CMe3 16, resp., and to monophosphanes; minor products are [Me(SiMe3)P]2P? P(SiMe3)2 6 and [Me(Me2Si)P]2P? P(SiMe3)CMe2 7. LiP(SiMe3)2 2 and LiP(SiMe3)CMe2 3 with 8 and 9 give Me(Me3,Si)P? P[P(SiMe3)2]2 10, Me(Me2Si)P? P[P(SiMe3)CMe2]? P(SiMe3)2 11, and Me(Me3Si)P? P[P(SiMe3)CMe3]2 12 as favoured products. With 20, LiP(SiMe3)2 2 forms P[P(SiMe3)2]3 28. Bond cleavage products are obtained in reactions of 20 with 1 and 2, of 21 with 1, 2, and 3, and of 22 with 1 and 2. P[P(SiMe3)CMe3]3 23 is the main product in the reaction of 22 with LiP(SiMe3)CRle2 3. In the reactions of 22 with 1, 2, and 3 the cyclophosphanes P3(CMe3)2(SiMe3)25, P4[P(SiMe3)CMe3]2(CMe3)2 26, and P5(CMe3)4(SiMe3) 27 are produced. The formation of these rom- pounds begins with bond cleavage in a P- SiMe, group by means of the phosphides. The thermal stability of the iso-tetraphosphanes decreases with an increasing number of silyl groups in the molecule. At 20O°C compounds 5, 7, and 23 are crystals; also 6 is stable; however, 10, It, 12, and 28 decompose already.  相似文献   

6.
1,2-Bis(trimethylsilyl)-3,4-di(tert-butyl) cyclotetraphosphane cis-P4(SiMe3)2(CMe3)2 1 could be prepared by the reaction of (Me3Si)2P—P(SiMe3)—P(SiMe3)CMe3 2 with (Me3C)PCl2 3 The compound 1 forms pale yellow crystals, m. p. 116°C. The 31P- and 1H-NMR data of 1 are given.  相似文献   

7.
Dimethylgallium-bis(trimethylsilyl)phosphane, Vibrational Spectrum, Force Constants, and X-Ray Structure Dimeric dimethylgallium-bis(trimethylsilyl)phosphane, [Me2Ga? P(SiMe3)2]2, (Me = CH3) is synthesized from Me2GaCl and P(SiMe3)3 in hot toluene. The compound crystallizes in the triclinic space group P1 with the cell parameters a = 909.8(2), b = 960.5(2), c = 971.6(2) pm; α = 76.75(1)°, β = 80.35(1)°, γ = 63.94(1)° and Z = 1 (dimer). The Ga? P distances are 244.8 and 245.2 pm, the ring angles are 91.8° (Ga? P? Ga) and 88.2° (P? Ga? P), respectively. The vibrational spectrum (IR and Raman for the solid) has been measured and assigned; force constants calculations are carried out for the skeleton [C2Ga? P(SiC3)2]2 using Fleischhauers [26] PC-program.  相似文献   

8.
Preparation and Reactions of Silylated Diphosphanes The preparation of previously not available silylated diphosphanes is reported, i. e. the compounds (Me3Si)2P? P(SiMe3)(CMe3) 1 , (Me3Si)2P? P(CMe3)2 2 and (CMe3)2P? P(SiMe3)(CMe3) 4 as well as of the respective PH containing derivatives and Li phosphides thereof. The reaction of 1 with MeOH leads to (Me3Si)2P? P(CMe3) H 6 , while 4 generates (Me3C)2P? P(CMe3) H 7 , and finally 3 gives access to (Me3C)(Me3Si)P? P(CMe3) H 8 . LiBu on the other hand forms the Li phosphides Li(Me3Si)P? P(SiMe3)(CMe3) 10 (through 1 ), Li(Me3Si)P? P(CMe3)2 11 (through 2 ), Li(Me3C)P? P(SiMe3)(CMe3) 12 (through 3 ), and Li(Me3C)P? P(CMe3)2 13 (through 4 ), the latter being more easily accessible through the reaction of H(Me3C)P? P(CMe3)2 with LiBu. The introduction of one single CMe3 substituent into 1 is sufficient to obtain the Li phosphide 10 , which is stable in ethers, as opposed to the corresponding Li Phosphide of the persilylated diphosphane.  相似文献   

9.
Formation of Organosilicon Compounds. 108 [1]. Thermally Induced Reactions of Amino-Substituted Disilanes Thermally induced reactions of amino-substituted disilanes yield Si rich silanes. At 300°C, Me3Si? SiMe2? NMeH 1 yields Me3Si? NMeH 2 and Me3Si? (SiMe2)2-NMeH 3 in a ratio 1 : 2 : 3 = 1,6 : 1 : 1, whereas Me3Si? SiMe2? N(iPr)H 4 at 350°C yields Me3Si? N(iPr)H 5 , Me3Si? (SiMe2)2-N(iPr)H 6 and Me3Si? (SiMe2)3? N(iPr)H 7 in a ratio of 4 : 6 : 7 = 0.8 : 1.0 : 0.6. Me3Si? SiMe2? NMe2 8 at 300°C (72 h) yields Me3Si? NMe2 9 and Me3Si-(SiMe2)2-NMe2 10 in a ratio of 9 : 8 : 10 = 1 : 0.22 : 0.44 The thermal stability of these disilanes is determined by the sterical requirements of the amino substituents NMeH < NMe2 < N(iPr)H. The introduction of a second NMe2 group decreases the stability and favours the formation of Si rich silanes. Such, Me2N? (SiMe2)2? NMe2 11 already at 250°C (2 h) yields Me2N? SiMe2? NMe2 12 , Me2N? (SiMe2)2? NMe2 13 and Me2N? (SiMe2)4? NMe2 14 in a ratio of 11 : 13 : 14 = 0.3 : 0.9 : 1.0. The reactions can be understood as insertions of thermally produced dimethylsilylene into the Si? N bond of the disilanes. This process is strongly favoured as compared to the trapping reactions with Ph? C?C? Ph or Et3SiH. The mentioned reactions correspond closely to those of the methoxy-disilanes[2]. However (MeN? SiMe2? SiMe2)2 15 , obtained from HMeN? (SiMe2)2? NMeH by condensation [3], at 400°C suffers a ring contraction to octymethyl-1,3-diaza-2,4,5-trisilacyclopentane (69 weight %), and yields also some solid residue, the composition of which corresponds to Si3C7NH21.  相似文献   

10.
Investigations on the Reactivity of [Me2AlP(SiMe3)2]2 with Base‐stabilized Organogalliumhalides and ‐hydrides [Me2AlP(SiMe3)2]2 ( 1 ) reacts with dmap?Ga(Cl)Me2, dmap?Ga(Me)Cl2, dmap?GaCl3 and dmap?Ga(H)Me2 with Al‐P bond cleavage and subsequent formation of heterocyclic [Me2GaP(SiMe3)2]2 ( 2 ) as well as dmap?AlMexCl3?x (x = 3 8 ; 2 3 ; 1 4 ; 0 5 ). The reaction between equimolar amounts of dmap?Al(Me2)P(SiMe3)2 and dmap?Ga(t‐Bu2)Cl yield dmap?Ga(t‐Bu2)P(SiMe3)2 ( 6 ) and dmap?AlMe2Cl ( 3 ). 2 – 8 were characterized by NMR spectroscopy, 2 and 6 also by single crystal X‐ray diffraction.  相似文献   

11.
Formation of the Cyclotetraphosphanes cis- und trans-P4(SiMe3)2(CMe3)2 in the Reaction of (Me3C)PCl2 with LiP(SiMe3)2 · 2 THF The mechanism of the reaction of (Me3C)PCl2 1 with LiP(SiMe3)2 · 2 THF 2 was investigated. With a mole ration of 1:1 at ?60°C quantitatively (Me3C)(Cl)P? P(SiMe3)2 3 is formed. This compound eliminates Me3SiCl on warming to 20°C, yielding Me3Si? P?P? CMe3 4 (can be trapped using 2,3-dimethyl-1,3-butadiene in a 4+2 cycloaddition), which dimerizes to produce the cyclotetraphosphanes cis-P4(SiMe3)2(CMe3)2 5 and trans-P4(SiMe3)2(CMe3)2 6 . Also with a mole ratio of 1:2 initially 3 is formed which remarkably slower reacts on to give [(Me3Si)2P]P2P? CMe3 8 . Remaining LiP(SiMe3)2 cleaves one Si? P bond of 8 producing (Me3)2P? P(CMe3)? P(SiMe3)2Li. Via a condensation to the pentaphosphide 10 and an elimination of LiP(SiMe3)2 from this intermediate, eventually trans-P4(SiMe3)2(CMe3)2 6 is obtained as the exclusive cyclotetra-phosphane product.  相似文献   

12.
On the Reactivity of (η5-C5Me5)(CO)2FeP(SiMe3)2 Toward P-Chloromethylene phosphanes The reaction of (η5-C5Me5)(CO)2FeP(SiMe3)2 ( 2 ) with three equivalents of Cl? P?C(SiMe3)2 ( 3a ) afforded the 3-methanediyl-1,3,5,6-tetraphosphabicyclo[3.1.0]hex-2-ene (η5-C5Me5)(CO)2Fe? ( 6a ). In contrast, 2 reacts with two equivalents of Cl? P?C(Ph)SiMe3 ( 3b ) to give the thermolabile (η5-C5Me5) · (CO)2Fe? P[P?C(Ph)SiMe3]2 ( 4b ) which decomposed during the reaction with further 3b. 4 b was also obtained from (η5-C5Me5)(CO)2Fe? P(SiMe3)? P?C(SiMe3)2 ( 1a ) and two equivalents of 3b .  相似文献   

13.
Reaction of Thiazylfluoride with Multifunctional Nitrogen Derivatives From the reaction of NSF 1 with LiN(SiMe3)R′ (R′ = CMe3, SiMe3), linear [e. g. (Me3C? N?S?N? )2S ( 11 ), Me3C? N?S?N? CMe3 ( 14 ), Me3Si? N?S?N? SiMe3 ( 17 ), (Me3Si)2N? S? N?S?N? SiMe3 ( 19 )] and cyclic thiazenes (S4N5F ( 22 )) are isolated, (S3N4)n ( 23 ) is obtained in high yield from 1 and 17 (in the ratio 2:1). Possible structures for 23 are discussed; the reaction of 23 with AsF5 gives S4N4 · AsF5 ( 24 ) in a hitherto unknown modification. Possible reactions of the terminal SN groups are discussed and the structures of 11 and 24 are reported.  相似文献   

14.
Treatment of dichloromethyl‐tris(trimethylsilyl)silane (Me3Si)3Si–CHCl2 ( 1 ), prepared by the reaction of tris(trimethylsilyl)silane with chloroform in presence of potassium tertbutoxide, with organolithium reagents (molar ratio 1 : 3) affords the bis(trimethylsilyl)methyl‐disilanes Me3SiSiR2–CH(SiMe3)2 ( 12 a–d ) ( a : R = Me, b : R = n‐Bu, c : R = Ph, d : R = Mes). The formation of 12 a–d is discussed as proceeding through an exceptional series of isomerization and addition reactions involving intermediate silyl substituted carbenoids and transient silenes. The carbenoid (Me3Si)2PhSi–C(SiMe3)LiCl ( 8 c ) is moderately stable at low temperature and was trapped with water to give (Me3Si)2PhSi–CH(SiMe3)Cl ( 9 c ) and with chlorotrimethylsilane affording (Me3Si)2PhSi–CCl(SiMe3)2 ( 7 c ). For 12 d an X‐ray crystal structure analysis was performed, which characterizes the compound as a highly congested silane with bond parameters significantly deviating from standard values.  相似文献   

15.
Extension of the Chain Length of P2(SiMe3)4 by Reaction with LiBu The first steps of the reaction of P2(SiMe3)4 1 with LiBu in THF, which finally yields Li3P7 among other P-rich phosphides while P(SiMe3)3 and LiP(SiMe3)2 are simultaneously split off, were investigated by means of 31P-NMR spectroscopy. At ?20°C first of all one Si? P bond is cleaved generating Li(Me3Si)P? P(SiMe3)2 2 as well as BuSiMe3. Subsequently 2 forms Li(Me3Si)P? P(SiMe3)? P(SiMe3)2 5 and LiP(SiMe3)2 4 in equimolar ratios. This clearly demonstrates that both compounds are generated in one single reaction step. This behaviour is caused by the different basicity of the respective P-atoms in 2 , which necessarily results in a multicentered mechanism.  相似文献   

16.
Synthesis of Aryl-bis(trimethylsilyl)-phosphonic Acid Esters via Tris-trimethylsilylphosphite – a Contribution of the Nickel-catalyzed Michaelis-Arbusov Reaction . The preparation of various aryl-bis(trimethylsilyl)-phosphonic acid esters via P(OSiMe3)3 or a mixture of HP(O)(OSiMe3)2/P(OSiMe3)3/Me3Si? NH? SiMe3 in presence of nickel compounds are described. The structures are proved by the 31P n.m.r. spectra.  相似文献   

17.
[(C6H5)3P]2Ni(Me3Si? C?C? SiMe3). Preparation, Properties, and Structure of the First Stable Nickel(0) Complex with Bis(trimethylsilyl)acetylene The title compound is the first example of a nickel(0) complex with bis(trimethylsilyl)acetylene and obtained from (ph3P)2Ni(C2H4) and bis(trimethylsilyl)acetylene in tetrahydrofuran. The complex is characterized by some reactions, the i.r. spectrum and by a structural analysis with the aid of X-ray diffraction data. (ph3P)2Ni(Me3Si? C?C? SiMe3) crystallizes monoclinic in the space group C2/c with four formula units per unit cell (2468 observed, independent reflexions, R = 0.038). The cell dimensions are a = 20.927, b = 13.812, c = 14.238 Å, α = γ = 90°, β = 91.02°. The molecules are monomer in crystalls. The molecule is planar with ligands arranged trigonally about the central atome but distorted to the tetrahedral complex.  相似文献   

18.
Synthesis of Substituted Calcium-bis(disilylamides) by Transmetalation of Tin(II) and Tin(IV) Amides Stannylenes as well as stannanes with substituted disilylamino groups are valuable synthons for the synthesis of alkaline earth metal bis(disilylamides) via the transmetallation reaction. Whereas bis[2,2,5,5-tetramethyl-2,5-disilaaza-cyclo-pentyl]stannylene 1 is a suitable reagent for this type of reaction, bis[trimethylsilyl-tris(trimethylsilyl)silylamino]stannylene 2 (monoclinic, P21/c, a = 1492.6(2), b = 1705.2(2), c = 1865.3(3) pm, β = 109.03(2)º, Z = 4) is not only attacked at the Sn? N-bond but also the N? Si-bond is cleaved by calcium metal. Similar light sensitivity as for 2 is observed for the mercury bis[trimethylsilyl-tris(trimethylsilyl)silylamide] 3 , the homolytic M? N-bond cleavage leads to the formation of the trimethylsilyl-tris(trimethylsilyl)silylamino radical (g = 2.00485; a(N) = 16.2 G). The calcium tin exchange reaction of 1 in THF yields tris(tetrahydrofuran-O)calcium-bis[2,2,5,5-tetramethyl-2,5-disilaaza-cyclo-pentanide] 4 (monoclinic, P21/n, a = 1060.9(2), b = 1919.3(5), c = 1686.0(3) pm, β = 90.30(2)º, Z = 4). The stannanes Men-4Sn[N(SiMe3)2]n with n = 1 or 2 are also valuable materials for the synthesis of bis(tetrahydrofuran-O)calcium-bis[bis(trimethylsilyl)amide].  相似文献   

19.
Investigations of the Reaction between the [Lithium(trimethylsilyl)amido]-methyl-trimethyl-silylamino-silane Me(Me3SiNLi)(Me3SiNH)SiH and different Electrophiles The lithium silylamide Me(Me3SiNLi)(Me3SiNH)SiH 1 reacts with chlorotrimethylsilan in the nonpolar solvent n-hexane to the N-substitution product Me[(Me3Si)2N](Me3SiNH)SiH 2 and to the cyclodisilazane [Me(Me3SiNH)Si—N(SiMe3)]2 3 nearly in same amounts. The reaction of 1 with chlorotrimethylstannane gives besides small amounts of the cyclodisilazane 3 the N-substitution product Me[(Me3Si)(Me3Sn)N](Me3SiNH)SiH 4 . By the reaction of 1 with trimethylsilyltriflate the cyclodisilazane 3 is obtained as the main product. Furthermore 2 and the cyclodisilazane 5 are formed. Ethylbromide shows no reaction with 1 under the same conditions. These results indicate the existence of an equilibrium of the lithium silylamide 1 , the silanimine Me(Me3SiNH)Si?N(SiMe3) and lithium hydride.  相似文献   

20.
N-Silylation and Si? O Bond Splitting at the Reaction of Lithiated Siloxy-silylamino-silanes with Chlorotrimethylsilane Lithiated Siloxy-silylamino-silanes were allowed to react in tetrahydrofurane (THF) and in n-octane (favoured) and n-hexane, resp., with chlorotrimethylsilane. The monoamide (Me3SiO)Me2Si(NLiSiMe3) gives in THF and in n-octane the N-substitution product (Me3SiO)Me2Si · [N(SiMe3)2] 1 , the diamide (Me3SiO)MeSi(NLiSiMe3)2 only in THF the N-substitution products (Me3SiO)MeSi[N(SiMe3)2]2 2 (main product) and (Me3SiO)MeSi[N(SiMe3)2](NHSiMe3) 3 . In n-octane the diamide reacts mainly under Si? O bond splitting. The cyclodisilazane [(Me3SiNH)MeSi? NSiMe3]2 6 is obtained as the main product. Byproducts are 2, 3 and the tris(trimethylsilylamino) substituted disilazane (Me3SiO)(Me3SiNH)MeSi? N · (SiMe3)? SiMe(NHSiMe3)2 7 . The triamide (Me3SiO)Si · (NLiSiMe3)3 reacts under Si? O and Si? N bond splitting in n-octane as well as in THF. The cyclodisilazanes [(Me3SiNH)2 · Si? NSiMe3]2 10 and ( 11 : R = Me3SiNH, 12 : R = (Me3Si)2N) are formed. in THF furthermore the N-substitution products (Me3SiO)Si[N(SiMe3)2] · (NHSiMe3)2 4 and (Me3SiO)Si[N(SiMe3)2]2(NHSiMe3) 5 . The Si? O bond splitting occurs in boiling n-octane also in absence of the chlorotrimethylsilane. An amide solution of (Me3SiO)MeSi(NHSiMe3)2 with n-butyllithium in the molar ratio 1 : 1 leads in n-octane and n-hexane to 6 and 7 , in THF to 3 . The amide solutions of (Me3SiO)Si · (NHSiMe3)3 with n-butyllithium the molar ratio 1 : 1 and 1 : 2 give in THF 4 and 5 , respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号