首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 517 毫秒
1.
While phosphaalkenes and phosphanes are known to participate in [4+n] cycloaddition reactions, P?C single bonds are inert in this respect. Herein, reactions of oxaphosphirane complexes with tetrachloro‐ortho‐benzoquinone are presented that reveal a stereoselective reaction of the endocyclic P?C bond to afford benzo‐1,3,6,2‐trioxaphosphepine complexes. High‐level DFT calculations provide evidence that the final product is derived from a sequence of three consecutive steps involving a ditopic van der Waals complex.  相似文献   

2.
The preparation and some properties of complexes ofp-tolylacetic acid with cobalt, nickel and copper are described. Magnetic measurements, electronic and far infrared spectra show that the metal complexes have octahedral structures. Infrared spectra indicate that coordination takes place through the carboxyl group to the metal ions and that the water molecule in each of the complexes is present as water of crystallisation. Thermogravimetry studies also show that the water molecules in each of the complexes do not form a coordinate bond with the metal ion. Differential thermal analysis show that the dehydration processes are accompanied by endothermic reactions. In each case the anhydrous metal complex undergoes an exothermic reaction to give the metal oxide.This work was supported by the Carnegie Trust for the Universities of Scotland and the Hungarian OTKA foundation (T-4096).  相似文献   

3.
Six new macrocyclic complexes were synthesized by template reactions of salicylaldehyde derivatives with (±)-trans-1,2-diaminocyclohexane and metal(II) nitrates. The metal to ligand ratio was 1 : 1. The Cu(II) complexes are proposed to be square planar and the Ni(II) and Co(II) complexes are proposed to be tetrahedral. The complexes are 1 : 2 electrolytes as shown by their molar conductivities (ΛM) in DMF. The metal complexes are characterized by elemental analyses, FT-IR, UV–Vis, magnetic susceptibility measurements, molar conductivity measurements and mass spectra.  相似文献   

4.
Specific features of the behavior of the supramolecular metal complex catalysts based on calixarenes, cyclodextrins, and dendrimers in the reactions of hydroformylation, Wacker oxidation, hydroxylation of aromatics, 2-naphthol coupling, and oxidative coupling of styrenes and benzene were studied. The factors affecting the catalytic activity and selectivity are discussed. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 766–778, April, 2008.  相似文献   

5.
Coordination reactions of copper(II) ions and their effect on non-covalent interactions in uridine (Urd) or uridine 5′-monophosphate (UMP) systems with nucleosides (Ado, Cyd, Thd) and nucleotides (AMP and CMP) in aqueous solutions have been studied. At high pH the effective coordination centers are deprotonated N(3) atoms from Urd and Thd, whereas at low pH, the N(3) atoms of pyrimidine nucleosides are blocked for coordination and the metallation sites are endocyclic nitrogen atoms from Ado, Cyd, AMP and CMP. Moreover, at low pH, the main reaction center in nucleotide solutions is the phosphate group. The NMR study has proven the occurrence of non-covalent ion-dipole interactions and stacking interactions in the systems considered. Introduction of a copper ion in the majority of systems causes the disappearance of weak interactions between ligands. The structures of the complexes in solution have been inferred from the equilibrium study: an analysis of the pH range of their occurrence with respect to the pH range of deprotonation of particular groups in the compounds studied, using Vis, EPR and 13C as well as 31P NMR spectral analysis.  相似文献   

6.
The thermal properties of cyanatocopper complexes with pyridine, bipyridine and phenanthroline are described in this paper. It was found that the thermal stabilities of the complexes were found to increase in the order pybipy2(NCS)2 (L=pyridine and its methyl derivates) which are composed of the liberation of ligandsL and redox reactions of thiocyanate ligands with the central Cu(II) atom [1, 2]. The decomposition temperature of thiocyanate ligands depends on the properties of the ligandsL present in the coordination sphere. An analogous course of thermal decomposition was also observed for [Cu(bipy)2(NCX)](NCX) (X=S or Se) [3]. For the phenanthroline complexes [Cu(phen)2(NCX)2] (X=S or Se) the thermal stability was found to increase significantly (by about 140C) and the decomposition stoichiometry was also changed [3].The present paper contains the results of thermoanalytical studies on bipyridine and phenanthroline cyanatocopper complexes, and a comparison of the thermal properties of pyridine cyanato and isothiocyanatocopper complexes.  相似文献   

7.
The combined use of aminocarbene and divinyltetramethyldisiloxane (dvtms) as supporting ligands enables the access of unprecedented low‐coordinate iron(0) alkene compounds [LnFe(η22‐dvtms)] (L=N‐heterocyclic carbene (NHC) or cyclic (alkyl)(amino)carbene (CAAC), n=1 or 2) from the reactions of FeCl2 with alkali‐metal reducing agents, free aminocarbene ligands, and dvtms. The iron(0) species deliver their {LnFe0} fragments to perform redox reactions with Ph2SiH2, S8, Se, and DippN3, furnishing novel aminocarbene‐supported iron(IV) silylene, all‐ferrous iron–sulfur/selenium cubanes, and bis(imido)iron(IV) compounds. These conversions demonstrate the potential synthetic utility of the carbene‐supported iron(0) complexes as a valuable class of low‐coordinate iron(0) reagents.  相似文献   

8.
The development of catalytic processes that effect enantioselective bond formation under mild conditions is an important and challenging task in modern chemical synthesis. In this connection, chiral C2-symmetric ansa-metallocenes (bridged metallocenes) have found notable applications as catalysts. This article discusses the chemistry of this class of chiral metallocene complexes with regard to their utility in catalytic and enantioselective C? C and C? H bond formation reactions. In addition, where applicable, a brief comparison with other related catalytic enantioselective processes is offered. Many of the reactions effected with high levels of enantioselectivity by catalytic amounts of these complexes are of great significance to the preparation of new materials and in the synthesis of therapeutic agents. For example, zirconocene complexes readily catalyze the enantioselective addition of alkylmagnesium halides to alkenes, and cationic zirconocene complexes may promote the highly stereoregulated copolymerization of terminal alkenes. Furthermore, the related chiral titanocenes are involved in an impressive range of useful asymmetric catalytic reactions, including the enantioselective hydrogenation of olefins and reduction of imines or ketones. This review attempts to bring together the practical aspects of the use of [(ebthi)M] complexes of Group 4 transition metals (catalyst synthesis and resolution), outline the manner in which the C2-symmetric chiral ligands are believed to initiate stereoselective bond formation, and highlight the aspects of this chemistry that are less well understood and require further research.  相似文献   

9.
One‐pot reactions of 2, 6‐bis(acetobenzoyl)pyridine (H2L) with a mixture of LnCl3 (Ln = Ce, Gd) and Ni(CH3COO)2 (ratio 2:1:2) in CH2Cl2/MeOH in the presence of a supporting base like Et3N give trinuclear complexes with the general composition [Ni2Ln(L)2(CH3COO)3(MeOH)2/3] ( 1 ) in high yields. Trinuclear [Ni2Ln(L)2(PhCOO)3(MeOH)2] ( 2 ) complexes are formed when similar reactions are performed starting from NiCl2, and benzoic acid (PhCOOH) is added subsequently. Under the same conditions, reactions with the corresponding cobalt(II) salts result in the formation of a neutral [Co83‐O)2(L)6] complex, which has a bis(triple‐helical) structure. The cobalt(II) analogues to compounds 1 and 2 , however, can be synthesized by a pre‐treatment of the lanthanide salts with H2L and subsequent addition of the cobalt salts, and benzoic acid (in the case of 2 ).  相似文献   

10.
Three types of metal complexes containing coordinated zwitterionic 8-Quinolinol(oxine) are isolated from the reaction ofMOx 2 (M=divalent Ni, Mn, or Mg; HO x =oxine) and haloacetic acidsRCO2H (R=CF3, CCl3, CHCl2, or CH2Cl) in benzene. These types are:M(O2CR)Ox·HOx forM=Ni,R=CCl3, CHCl2, and CH2Cl and forM=Mn,R=CHCl2.MOx(HOx) (RCO2)MOx·nH2O forM=Ni, Mn, or Mg,R=CF3 andn=1,1, and 4, respectively.MO x (HOx) (RCO2)2 MOx forM=Mn andR=CCl3. These types are compared with the simple mixed chelateMn(O2CCH2Cl)Ox. Interrelated reactions are suggested to explain the formation of these metal complexes and the contributing factors are discussed. The coordination of the zwitterion to the metal ion through its phenolate oxygen and the presence of the triatomic system+N–H...O in the three types of metal complexes are evidenced by typical infrared bands. Analytical and spectral data are in accordance with the suggested formulations.
Koordination von zwitterionischem 8-Chinolinol (Oxin) an gemischten Oxinat-Carboxylat-Komplexen des divalenten Nickel, Mangan und Magnesium
Zusammenfassung Drei Typen von Metallkomplexen mit koordiniertem zwitterionischem 8-Chinolinol (Oxin) wurden aus der Reaktion vonMOx 2 [M=Ni(II), Mn(II), Mg(II); HOx=Oxin] mit Halogen-essigsäurenRCOOH (R=CF3, CCl3, CHCl2, CH2Cl) in Benzol isoliert. Es werden Reaktionswege zur Bildung der Komplexe diskutiert. Die Koordination des Zwitterions über den phenolischen Sauerstoff und die Präsenz der Gruppierung+N–H...O in allen Typen der untersuchten Metallkomplexe wird auf Grund typischer IR-Banden nachgewiesen.
  相似文献   

11.
The results of our recent studies devoted to the synthesis of cationic triple-decker complexes are summarized. The stacking reactions of cationic metallofragments with sand-with compounds can be used as a general method for the synthesis of these complexes. This method was used for the preparation of 30- and 34-electron cationic triple-decker complexes containing cyclopentadienyl and pentaphospholyl ligands in the bridging position and carbocycles C n H n (n=4–7) and carboranes as terminal ligands. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1636–1642, September, 1999.  相似文献   

12.
Divalent and solvent-free : the ytterbium hydrido complex 1 was obtained by the hydrogenolysis of [(TptBu,Me)Yb(CH2SiMe3)(thf)]. The steric demand of the bulky hydrotris(3-tert-butyl-5-methylpyrazolyl)borate ligand, TptBu,Me, is sufficient to stabilize the dimer, yet facile room-temperature reactions with amines, alkynes, diynes, and CO indicate a rich chemistry of 1 .  相似文献   

13.
The currently available data on the structure and reactivity of fullerenes, including the formation of metal complexes (including optically active ones) with fullerenes as ligands, are briefly surveyed. The properties and reactions of fullerenyl radicals and endohedral complexes are considered. The review is based on the report of the same name delivered at the XVI Mendeleev Congress (May 28, 1988, St. Petersburg). Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1211–1218, July, 1999.  相似文献   

14.
The reaction of the ‘oximato’‐ligand precursor A (Fig. 1) and metal salts with KCN gave two mononuclear complexes [ML(CN)(H2O)n](ClO4) ( 1 and 2 ; L={N‐(hydroxy‐κO)‐α‐oxo‐N′‐[(pyridin‐2‐yl‐κN)methyl[1,1′‐biphenyl]‐4‐ethanimidamidato‐κN′}; M=CoII ( 1 ), CuII ( 2 ); n=2 for CoII, n=0 for CuII; Figs. 2 and 3). The new cyano‐bridged pentanuclear ‘oximato’ complexes [{ML(H2O)n(NC)}4M1(H2O)x](ClO4)2 ( 3 – 6 ) and trinuclear complexes [{ML(H2O)n(NC)}2M1L](ClO4) ( 7 – 10 ) ([M1=MnII, CuII; x=2 for MnII, x=0 for CuII] were synthesized from mononuclear complexes and characterized by elemental analyses, magnetic susceptibility, molar conductance, and IR and thermal analysis. The four [ML(CN)(H2O)n]+ moieties are connected by a metal(II) ion in the pentanuclear complexe 3 – 6 , each one involving four cyano bridging ligands (Fig. 4). The central metal ion displays a square‐planar or octahedral geometry, with the cyano bridging ligands forming the equatorial plane. The axial positions are occupied by two aqua ligands in the case of the central Mn‐atom. The two [ML(CN)(H2O)n]+ moieties and an ‘oximato’ ligand are connected by a metal(II) ion in the trinuclear complexes 7 – 10 , each one involving two cyano bridging ligands (Fig. 5). The central metal ions display a distorted square‐pyramidal geometry, with two cyano bridging ligands and the donor atoms of the tridentate ‘oximato’ ligand. Moreover catalytic activities of the complexes for the disproportionation of hydrogen peroxide (H2O2) were also investigated in the presence of 1H‐imidazole. The synthesized homopolynuclear CuII complexes 6 and 10 displayed eficiency in disproportion reactions of H2O2 producing H2O and dioxygen thus showing catalase‐like activity.  相似文献   

15.
X-ray structural studies on metal complexes with nucleotides and with pyridoxalamino acid Schiff bases are briefly reviewed. The results with ternary metal nucleotide complexes show that the oxopurine nucleotides coordinate to the metal ion through the N(7) atoms of the bases incis position. The relevance of this mode of binding is discussed in terms of the possible mechanism of action of the novel platinum drugs. On the basis of the studies on metal pyridoxal-amino acid Schiff base complexes, the variations in stereochemistry of the ligands in different metal complexes have been related to the catalytic activity of various metal ions in pyridoxal-catalyzed nonenzymatic reactions.  相似文献   

16.
New Rhenium Complexes Containing Trichalcogenido and Tetrachalcogenido Chelate Ligands The reactions of Cp*ReCl4 with polychalcogenide salts such as Na2S4 or (NEt4)2Se6 lead initially to the violet trichalcogenido chelate complexes Cp*ReCl2(E3) (E = S ( 3a ), Se ( 3b )) which, due to their functional chloro ligands, can be used as intermediates for further reactions. Upon hydrolysis in moist solvents or aminolysis with tert. butylamine 3a, b are converted into the tetrachalcogenido chelate complexes Cp*Re(O)(E4) (E = S ( 4a ), Se ( 4b )) and Cp*Re(NtBu)(E4) (E = S ( 5a ), Se ( 5b )), respectively. X-Ray structure analyses were carried out for the three mononuclear cyclo-oligoselenido compounds 3b–5b . It appears that the size of the Se2?n chelate ring (n = 3 or 4) essentially depends on steric factors within the coordination sphere of rhenium.  相似文献   

17.
Displacement of the benzene ligand in 1 surprisingly occurs more readily than that of the methyl acrylate ligand. This paves the way for 1 to undergo arene exchange and arene substitution reactions, which may be triggered by a η2η4 haptotropic rearrangement of the acrylate. Complex 1 is thus a mild precursor of the highly unsaturated fragments [Cr(CO)2] (see scheme) and [Cr(CO)2(η2-acrylate)].  相似文献   

18.
Thermal activation of molecular oxygen is observed for the late‐transition‐metal cationic complexes [M(H)(OH)]+ with M=Fe, Co, and Ni. Most of the reactions proceed via insertion in a metal? hydride bond followed by the dissociation of the resulting metal hydroperoxide intermediate(s) upon losses of O, OH, and H2O. As indicated by labeling studies, the processes for the Ni complex are very specific such that the O‐atoms of the neutrals expelled originate almost exclusively from the substrate O2. In comparison to the [M(H)(OH)]+ cations, the ion? molecule reactions of the metal hydride systems [MH]+ (M=Fe, Co, Ni, Pd, and Pt) with dioxygen are rather inefficient, if they occur at all. However, for the solvated complexes [M(H)(H2O)]+ (M=Fe, Co, Ni), the reaction with O2 involving O? O bond activation show higher reactivity depending on the transition metal: 60% for the Ni, 16% for the Co, and only 4% for the Fe complex relative to the [Ni(H)(OH)]+/O2 couple.  相似文献   

19.
This review focuses on a new concept in catalytic asymmetric reactions that was first realized for the use of heterobimetallic complexes. As these heterobimetallic complexes function as both a Brønsted base and as a Lewis acid, just like an enzyme, they make possible a variety of efficient catalytic asymmetric reactions. This heterobimetallic concept should prove to be applicable to a variety of new asymmetric catalyses. The first part of this review describes the development of rare-earth–alkali metal complexes such as LnM3tris(binaphthoxide) complexes (LnMB, Ln = rare-earth metal, M = alkali metal), which are readily prepared from the corresponding rare-earth trichlorides or rare-earth isopropoxides, and their application to catalytic asymmetric synthesis. By using a catalytic amount of LnMB complexes several asymmetric reactions proceed efficiently to give the corresponding desired products in up to 98% ee: LnLB-catalyzed asymmetric nitroaldol reactions (L = Li), LnSB-catalyzed asymmetric Michael reactions (S ? Na), and LnPB-catalyzed asymmetric hydrophosphonylations of either imines or aldehydes (P ? K). Applications of these heterobimetallic catalysts to the syntheses of several biologically and medicinally important compounds are also described. Spectral analyses and computational simulations of the asymmetric reactions catalyzed by the heterobimetallic complexes reveal that the two different metals play different roles to enhance the reactivity of both reaction partners and to position them. From mechanistic considerations, a useful activation of the heterobimetallic catalyses was realized by addition of alkali metal reagents. The second part describes the development of another type of heterobimetallic catalysts featuring Group 13 elements such as Al and Ga as the central metal. Among them, the AlLibis(binaphthoxide) complex (ALB) is an effective catalyst for asymmetric Michael reactions, tandem Michael–aldol reactions, and hydrophosphonylation of aldehydes.  相似文献   

20.
The new C2‐symmetric bis‐oxazoline (=bis[4,5‐dihydrooxazole]) 2 with a chiral trans‐(2R,3R)‐2,3‐bis(3,5‐diphenylphenyl)cyclopropylidene (=trans‐(2R,3R)‐2,3‐bis([1,1′: 3′,1″‐terphenyl]‐5′‐yl)cyclopropylidene) backbone was efficiently synthesized (Scheme). All synthetic steps were easy to perform and led to the desired product in good overall yields. Compound 2 was tested and compared as ligand in several enantioselective catalytic reactions such as palladium(0)‐catalyzed enantioselective allylic alkylations and copper(I)‐catalyzed enantioselective cyclopropanations and aziridinations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号