首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coating colours used for the coating of paper and board consist mainly of a mineral pigment, which is very often clay, a synthetic binder such as a styrenebutadiene latex, dispersion agents and water retention aids. The latter are often water soluble polymers. These polymers have a very strong influence on the rheological properties of the coating colours, both on the strain rate dependence of the apparent viscosity and on the viscoelasticity. The effects of two different grades of carboxymethylcellulose (CMC) and one grade of hydroxyethylcellulose (HEC), on the rheological properties at room temperature of a clay-based coating colour at pH 8, have been investigated. It is concluded that the high values of the dynamic modulus of the colours are due to interactions between the cellulose derivatives and the solid particles, i.e. mainly the clay particles. For HEC this interaction is associated with adsorption of the polymeric molecules on the clay particles. In the case of CMC, the adsorption is strongly retarded by the presence of the dispersant (a polyacrylate salt). It is suggested that the marked elasticity of the CMC-containing colour in addition to a possible polymer adsorption may be due to charge interactions and/or depletion flocculation. The effect of CMC and HEC on the water-retention properties of the colour is also discussed.  相似文献   

2.
The analytical model derived by Howe assessing the acoustic effect of perforated plates has been implemented in a 3D Helmholtz solver. This solver allows one to compute the acoustic modes of industrial chambers taking into account the multiperforated plates present for the cooling of the walls. An academic test case consisting of two coaxial cylinders, with the inner one being perforated is used to validate the implementation in the general purpose AVSP code. This case is also used to show the effects of the presence of the plates. In particular, the sensitivity of the acoustic damping to the bias flow speed will be studied. A maximum absorption speed is shown, and the behaviour towards an infinite speed will be illustrated by the academic case. Computations are also conducted in the case of an industrial helicopter chamber. The value of the maximum absorption speed is discussed to explain why the modes are in fact not much absorbed by the perforated plates, and that the frequencies are the same as for walls. To cite this article: E. Gullaud et al., C. R. Mecanique 337 (2009).  相似文献   

3.
Theoretical studies of the propagation of impact waves through the thorax are needed to improve the design of bulletproof jackets and blast protections (Fung in ‘Biomechanics Motions, Flow, Stress, and Growth’, Springer-Verlag, 1990; Cooper et al., J. Trauma 40 (1996) S38–S41). The influence of the weak acoustic coupling at the interface between the thoracic wall and the lung were described in (Grimal et al., C. R. Acad. Sci. IIB 329 (2001) 655–662); in this work, we study, within the frame of elastodynamics and with an approximate analytical method, the effects of the curvature of this interface. Results are given in terms of strain energy for the pressure wave, transmitted or converted. Focalisation of energy in the medium representing the lung is important for curvatures measured in humans. To cite this article: Q. Grimal et al., C. R. Mecanique 330 (2002) 569–574.  相似文献   

4.
The time‐dependent hydrodynamic removal of a contaminated fluid from a rectangular cavity on the floor of a duct is analysed numerically. Laminar duct flows are considered for Reynolds numbers of 50 and 1600 where the characteristic length is the duct height. Two cases are considered where: (1) the fluid density in the cavity is the same as that for the duct fluid and (2) the cavity fluid has a higher density than the duct fluid but the two fluids are miscible. The flow is solved by a numerical solution of the time‐dependent Navier–Stokes equations. Attention is focused on the convective transport of contaminated fluid out from the cavity and the effect of duct flow velocity profile on the cleaning process. Passive markers are used in the numerical simulation for the purpose of identifying the contaminated cavity fluid. The results show that the flow patterns in the cavity are influenced by the type of duct flow. From a cleaning perspective, the results suggest that it is easier for the duct flow to penetrate a cavity and to remove contaminated cavity fluid when the duct flow is of the Poiseuille type and the aspect ratio is large. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
An experimental study of the shrinkage effect in low density-high density polyethylene blends, high density-high density polyethylene blends and low density polyethylene-ethylene vinyl acetate copolymer blends is presented. Viscosity measurements are also included.The strain recovery is analysed as the addition of the interfacial tension effect and the elastic recoverable strain. The results are compared with those obtained for other polyolefin blends observing that in the case of compatible systems as low density-high density polyethylene and high density-high density polyethylene blends the strain recovery and the viscosity follow approximately the additive rule. In the case of more incompatible systems like polyethylene-ethylene vinyl acetate copolymer, polyethylene-polypropylene and others very large recoveries were observed. The formation of minifibres of the dispersed phase during the preparation of the samples is suggested as responsible for the obtained results.  相似文献   

6.
Detailed experimental investigation of a non-equilibrium nanosecond pulsed discharge in premixed CH4/air mixtures at atmospheric pressure has been carried out. The experiments demonstrated significant reductions in ignition delay and increased lean burn capability relative to conventional spark ignition. Advanced laser diagnostics have been used to identify the physical processes which lead to these improvements. The electron temperature and density properties were measured using laser Thomson scattering (LTS). Temperature measurements were performed using N2 CARS thermometry to quantify the energy transfer in the gas mixture. Effect of the discharge on the local temperature shows the existence of the ignition of the gas mixture for equivalence ratio between 0.7 and 1.3. Fast development of a flame kernel is then observed. The experiment also shows that the flame can be sustained above the discharge due the repetitive ignition of the flame at the plasma repetition rate. Finally, OH and CH PLIF experiments were performed to confirm the large OH and CH streamer-induced production over the discharge volume. To cite this article: F. Grisch et al., C. R. Mecanique 337 (2009).  相似文献   

7.
In this paper,the nonlinear dynamic behavior of a string-beam coupled system subjected to external,parametric and tuned excitations is presented.The governing equations of motion are obtained for the nonlinear transverse vibrations of the string-beam coupled system which are described by a set of ordinary differential equations with two degrees of freedom.The case of 1:1 internal resonance between the modes of the beam and string,and the primary and combined resonance for the beam is considered.The method of multiple scales is utilized to analyze the nonlinear responses of the string-beam coupled system and obtain approximate solutions up to and including the second-order approximations.All resonance cases are extracted and investigated.Stability of the system is studied using frequency response equations and the phase-plane method.Numerical solutions are carried out and the results are presented graphically and discussed.The effects of the different parameters on both response and stability of the system are investigated.The reported results are compared to the available published work.  相似文献   

8.
    
Poincaré type integral inequality plays an important role in the study of nonlinear stability (in the sense of Arnold’s second theorem) for three-dimensional quasigeostophic flow. The nonlinear stability of Eady’s model is one of the most important cases in the application of the method. But the best nonlinear stability criterion obtained so far and the linear stability criterion are not coincident. The two criteria coincide only when the period of the channel is infinite. To fill this gap, the enhanced Poincaré inequality was obtained by considering the additional conservation law of momentum and by rigorous estimate of integral inequality. So the new nonlinear stability criterion was obtained, which shows that for Eady’s model in the periodic channel, the linear stable implies the nonlinear stable. Foundation item: the Municipal Key Subject Program of Shanghai of China Biography: LIU Yong-ming, Professor, E-mail: ymliu@math.ecnu.edu.cn  相似文献   

9.
尤明庆 《力学季刊》2016,37(2):381-388
摩擦提供的约束反力在由正应力所确定的范围之内.对称平板支承下的直杆在水平状态时平衡,但重心最高,因而没有摩擦时不能稳定平衡;摩擦作用下直杆平衡的倾角范围与平板坡度相关,可依据摩擦力达到极限值确定;若直杆与平板夹角小于90o,则平衡是稳定的,否则将跳跃到一侧平板,且摩擦角小于板面倾角时下滑到底部.支承板倾角变化时,处于稳定平衡状态的直杆将在一端发生滑移:倾角增大则高端向上、减小则低端向下,以使直杆重心位置较低.若支承板倾角作周期性变化,则直杆将逐渐倾斜而失稳:下滑到底部或跳跃到一侧平板.摩擦使力学系统具有非线性特征,其平衡位置可以在状态参数连续变化时发生跳跃.  相似文献   

10.
骨组织内的流体流动不仅为骨细胞的生存提供了充足营养供应及代谢物排放途径,也在骨重建过程中起到关键作用. 为了更精确地阐明骨内液体流动的具体形式,这项研究利用骨陷窝-骨细胞的密度,形态和方向等参数来计算骨单元内液体的流动行为. 首先,计算出不同形状和方向的骨陷窝周围骨小管的数量及分布情况,其次利用算出的参数以及骨组织其他微结构数据来估计骨组织的渗透率和孔隙率等参数,最后根据计算所得的参数建立骨单元的多孔弹性力学有限元模型,并分析了在轴向位移载荷作用下骨陷窝形状和方向对骨单元内液体渗流行为的影响. 结果表明,在所研究的参数范围内不同骨单元模型的相同区域上,骨陷窝形状影响下的骨单元最大压力和流速比最小的分别增加了86%和18%;骨陷窝方向影响下的最大压力和流速比最小的分别增加了125%和56%. 伸长形骨陷窝对单个骨单元局部压力的影响远大于扁平形和圆形骨陷窝. 骨陷窝从0°绕$x$轴旋转到90°过程中压力是逐渐降低的,且30°,45°和60°的模型对骨单元内局部流速有显著影响. 该模型表示骨陷窝的形状和方向以及骨小管的三维分布对骨单元内液体压力和流速幅值及沿不同方向的流动差异有显著的影响. 这项研究将有助于精确量化描述骨内液体的流体行为.   相似文献   

11.
This paper presents an analytical study on the behavoiur of blood flow in an artery having a stenosis. This is basically formulated through the use of a suitable mathematical model. The arterial segment under consideration is simulated by an anisotropically elastic cylindrical tube filled with a viscous incompressible fluid representing blood. The analysis is carried out for an artery with mild local narrowing in its lumen forming a stenosis. Particular emphasis has been paid to the effect of the surrounding connective tissues on the motion of the arterial wall. Blood is treated as a Newtonian fluid. The analysis is restricted to propagation of small amplitude harmonic waves, generated due to the flow of blood whose wave length is large compared to the radius of the arterial segment. The effect of the shape of stenosis on the resistance to blood flow has been well illustrated quantitatively through numerical computations of the resulting expressions. A quantitative analysis is also made for the variation of the phase velocity, as well as the velocity of wave propagation and the flow rate, in order to illustrate the applicability of the model.  相似文献   

12.
Buoyancy-driven convection within a cavity, whose sidewalls are heated and cooled, is a problem of great interest, because it has applications in heat transfer and mixing. Most studies to date have studied one of two cases: the steady-state case or the development of the transient flow as it approaches steady state. Our main concern was to study the response of the cavity to time-varying thermal boundary conditions. We therefore decided to observe the flow phenomena within a convection cavity under sinusoidal thermal forcing of the sidewalls. To map the flow properly, it is necessary to have simultaneous kinematic and thermal information. Therefore, the digital particle image thermometry and velocimetry (DPITV) is used to acquire data. Implementing this technique requires seeding the flow with encapsulated liquid crystal particles and illuminating a cross section of the flow with a sheet of white light. Extraction of the thermal and kinematic content is in two parts. For the first, the liquid crystals will reflect different colors of the visible spectrum, depending on the temperatures to which they are subjected. Therefore, calibrating their color reflection with temperature allows for the extraction of the thermal content. For the second part, the kinematic information is obtained through the use of a digital cross-correlation particle image velocimetry technique. With the use of DPITV, the flow within a convection cavity is mapped and studied under steady forcing and sinusoidally forced boundary conditions at the Brunt-Väisälä frequency. For the sinusoidally forced case, three cases are studied. In the first, the heating between the two walls is in phase. In the second, the heating between the two walls is 180° out of phase. In the third, the heating between the two walls is 90° out of phase. For steady forcing, the thermal plots show that the flow develops a linearly stratified profile within the center of the cell. At the sidewalls, however, owing to forcing, hot/cold thermal boundary layers develop at the left/right walls. These hot/cold thermal boundary layers then turn around the upper-left/lower-right corners and develop into intrusion layers that extend across the top and bottom walls. The vorticity and streamlines show that the bulk of the fluid motion is concentrated around the walls, whereas the fluid within the center of the cell remains stationary. For the sinusoidally forced cases, the thermal plots show the existence of many thermal “islands,” or pockets of fluid where the temperature is different with respect to its surroundings. The vorticity plots show that the center of the cell is mostly devoid of vorticity and that the vorticity is mainly confined to the sidewalls, with some vorticity at the top and bottom walls. For the 0° forcing, the streamlines show the development of two counterrotating rollers. For the 180° forcing, the streamlines show the development of only one roller. Finally, for the 90° forcing, the streamlines show the development of both a two-roller and a one-roller system, depending on the position within the forcing cycle.  相似文献   

13.
This paper investigates the non-linear in-plane buckling of pin-ended shallow circular arches with elastic end rotational restraints under a central concentrated load. A virtual work method is used to establish both the non-linear equilibrium equations and the buckling equilibrium equations. Analytical solutions for the non-linear in-plane symmetric snap-through and antisymmetric bifurcation buckling loads are obtained. It is found that the effects of the stiffness of the end rotational restraints on the buckling loads, and on the buckling and postbuckling behaviour of arches, are significant. The buckling loads increase with an increase of the stiffness of the rotational restraints. The values of the arch slenderness that delineate its snap-through and bifurcation buckling modes, and that define the conditions of buckling and of no buckling for the arch, increase with an increase of the stiffness of the rotational end restraints.  相似文献   

14.
A model to relate the thermal conductivity tensor to the deformation of an amorphous polymeric material above the glass transition temperature is presented. The basis of the model is formed by the transient network theory for polymer melts. With this theory it is possible to calculate the average orientation of the macromolecular segments as a function of the history of the deformation. Combined with an expression which relates the thermal conductivity to the orientation of the molecules, this provides us with the information needed to calculate the heat conduction tensor. Despite the fact that the simplest possible network model is chosen, there is good agreement with the sparse, experimental results.  相似文献   

15.
16.
The rheological behavior of stable slurries is shown to be characterized by a bimodal model that represents a slurry as made up of a coarse fraction and a colloidal size fine fraction. According to the model, the two fractions behave independently of each other, and the non-Newtonian behavior of the viscosity is solely caused by the colloidal fraction, while the coarse fraction increases the viscosity level through hydrodynamic interactions. Data from experiments run with colloidal coal particles of about 2–3 µm average size dispersed in water show the viscosity of these colloidal suspensions to exhibit a highly shearrate-dependent behavior and, in the high shear limit, to match very closely the viscosity of suspensions of uniform size rigid spheres although the coal volume fraction must be determined semi-empirically. Different amounts of coarse coal particles are added to the colloidal suspension and the viscosity of the truly bimodal slurries measured as a function of shear rate. In agreement with the bimodal model, the measured shear viscosities show the coarse fraction to behave independently of the colloidal fraction and its contribution to the viscosity rise to be independent of the shear rate. It is shown that the shear rate exerted on the colloidal fraction is higher than that applied by the viscometer as a result of hydrodynamic interactions between the coarse particles, and that it is this effective higher shear rate which is necessary to apply in the correlations. For determining the coal volume fraction a relatively simple and quite accurate measurement technique is developed for determining the density and void fraction of coarse porous particles; the technique directly relates volume fraction to mass fraction.  相似文献   

17.
Surface finish of open holes on fatigue life   总被引:2,自引:0,他引:2  
In this paper, the effect of surface finish of open holes on the fatigue life has been studied. Four defects of the surface finish are simulated. They are scratch, void, inclusion and roundness. Firstly, the effect of the four defects on the stress distributions around the holes has been studied by the finite element method (FEM). The fatigue lives are determined based on the stress distributions by the method of nominal stress approach. The results show that the fatigue lives are dependent on the quantity of the surface finished. There are the critical defect values of scratch, void and inclusion, smaller than which there is no effect of the surface finish on the fatigue life. For these three defects, the fatigue lives decrease with the increasing of the values of the defects. It is the same to the defect of roundness, e.g. the bigger roundness tolerance is, the shorter the life is. Further, an approximate quadratic curve has been found for the relationship between the roundness tolerances and their logarithmic fatigue lives.  相似文献   

18.
陈玲  唐有绮 《力学学报》2019,51(4):1180-1188
轴向运动结构的横向参激振动一直是非线性动力学领域的研究热点之一. 目前研究较多的是轴向速度摄动的动力学模型,参数激励由速度的简谐波动产生. 但在工程应用中,存在轴向张力波动的运动结构较为广泛,而针对轴向张力摄动的模型研究较少. 本文研究了时变张力作用下轴向变速运动黏弹性梁的分岔与混沌. 考虑随着时间周期性变化的轴向张力,计入线性黏性阻尼,采用Kelvin模型的黏弹性本构关系,给出了梁横向非线性 振动的积分--偏微分控制方程. 首先应用四阶Galerkin截断方法将控制方程离散化,然后采用四阶Runge-Kutta方法计算系统的数值解,进而确定其动力学行为. 基于梁中点的横向位移和速度的数值结果,仿真了梁沿平均轴速、张力摄动幅值、张力摄动频率以及黏弹性系数变化的倍周期分岔与混 沌运动,并且通过计算系统的最大李雅普诺夫指数来识别其混沌行为. 结果表明:较小的平均轴速有助于梁的周期运动,梁在临界速度附近容易发生倍周期分岔与混沌行为. 随着张力摄动幅值的增大,梁的振动幅值的混沌区间不断增大. 较小的黏弹性系数和张力摄动频率更容易使梁发生混沌运动. 最后,给出时程图、频谱图、相图以及Poincaré 映射图来确定梁的混沌运动.   相似文献   

19.
深水浅层的压实程度低、结构薄弱,其破坏规律是深水浅层相关问题研究中的关键点之一。目前修正的剑桥模型已经应用于深水浅层的各类研究中,但是在深水浅层的井壁稳定问题中,深水浅层往往仍然被认为是理想弹塑性材料。将井眼周围地层分为3个区域:弹性区、流动区、塑性区。弹性区,地层为线弹性状态;流动区,地层服从修正的剑桥模型及小变形理论;塑性区,地层服从摩尔库伦准则。对各个区域的应力分布进行了求解,并在求解的基础上,结合超级孔隙压力建立了深水浅层的井壁稳定分析模型。通过实例运算,该井壁稳定模型的可靠性得到了验证。  相似文献   

20.
In a recent paper, Joseph et al. showed that, for a number of viscoelastic fluids, one can observe the phenomenon of delayed die swell beyond a critical extrusion velocity, or beyond a critical value of the viscoelastic Mach number. Giesekus had also observed that delayed die swell is a critical phenomenon.In the present paper, we find a set of material and flow parameters under which it is possible to simulate delayed die swell. For the viscoelastic flow calculation, we use the finite element algorithm with sub-elements for the stresses and streamline upwinding in the discretized constitutive equations. For the free surface, we use an implicit technique which allows us to implement Newton's method for solving the non-linear system of equations. The fluid is Oldroyd-B which, in the present problem, is a singular perturbation of the Maxwell fluid. The results show very little sensitivity to the size of the retardation time. We also show delayed die swell for a Giesekus fluid.This paper is dedicated to Professor Hanswalter Giesekus on the occasion of his retirement as Editor of Rheologica Acta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号