首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The behavior of the analyte molecules inside the neutral core of the charged electrospray (ES) droplet is not unambiguously known to date. The possibility of protein conformational change inside the charged ES droplet has been investigated. The ES droplets encapsulating the protein molecules were exposed to the acetic acid vapor in the ionization chamber to absorb the acetic acid vapor. Because of the faster evaporation of water than that of acetic acid, the droplets became enriched with acetic acid and thus altered the solvent environment (e.g. pH and polarity) of the final charged droplets from where the naked charged analytes (proteins) are formed. Thus, the perturbation of the ES droplet solvent environment resulted in the protein conformational change (unfolding) during the short lifespan of the ES droplet and that is reflected by the multimodal charge state distribution in the corresponding mass spectra. Further, the extent of this conformational change inside the ES droplet was found to be related to the structural flexibility of the protein. Although the protein conformational change inside the ES droplet has been driven by using acetic acid vapor in the present study, the results would help in the near future to understand the spontaneity of the conformational change of the analyte on the millisecond timescale of phase transition in the natural way of ES process. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Dual-spray extractive electrospray ionization (EESI) mass spectrometry as a versatile analytical technique has attracted much interest due to its advantages over conventional electrospray ionization (ESI). The crucial difference between EESI and ESI is that in the EESI process, the analytes are introduced in nebulized form via a neutral spray and ionized by collisions with the charged droplets from an ESI source formed by spraying pure solvent. However, the mechanism of the droplet–droplet interactions in the EESI process is still not well understood. For example, it is unclear which type of droplet–droplet interaction is dominant: bounce, coalescence, disruption, or fragmentation? In this work, droplet–droplet interaction was investigated in detail based on a theoretical model. Phase Doppler anemometry (PDA) was employed to investigate the droplet behavior in the EESI plume and provide the experimental data (droplet size and velocity) necessary for theoretical analysis. Furthermore, numerical simulations were performed to clarify the influence of the sheath gas flow on the EESI process. No coalescence between the droplets in the ESI spray and the droplets in the sample spray was observed using various geometries and sample flow rates. Theoretical analysis, together with the PDA results, suggests that droplet fragmentation may be the dominant type of droplet–droplet interaction in the EESI. The interaction time between the ESI droplet and the sample droplet was estimated to be <5 μs. This work gives a clear picture of droplet–droplet interactions in the dual-spray EESI process and detailed information for the optimization of this method for future applications that require higher sensitivity.  相似文献   

3.
Electrospray ionization (ESI) mechanisms are highly complex, due to a series of physical and chemical phenomena taking place on a complex system, as a solution is. In fact, even if the solution of an analyte in a protic medium can be considered at first sight to be a two-component system, the presence of solvent dissociation equilibria and the possible interactions solvent-solvent dissociation products, solvent dissociation products-analyte make this system highly complex, also for the presence of possible ionic compounds (for example, Na(+), K(+)) which strongly affect the above equilibria. A high number of research articles have been published, mainly devoted to charged droplet production and to gas-phase ion generation. They all show the high complexity of the processes affecting electrospray measurements related to either the chemical equilibria present in the condensed phase and to electrolysis processes at the emitter tip or to the processes occurring in the sprayed droplets. As a result, the chemical composition inside the small droplets from which the analyte ions are generated can be significantly different from those in sprayed solution. In this review, after a short survey of the proposed ESI mechanisms, some experiments are described. They were performed to examine if ion mobility in solution, before the formation of the sprayed charged droplets, can affect the ESI results. The data, obtained by studying both inorganic and organic analytes, indicate that the ESI spectra are dependent on the analyte dimension and charge state which, as a consequence, affect their ion mobility in solution.  相似文献   

4.
Electrospray ionization (ESI) is commonly used in macromolecular mass spectrometry, yet the dynamics of macromolecules in ESI droplets are not well understood. In this study, a Monte Carlo based model was developed, which can predict the efficiency of electrospray ionization for macromolecules, i.e., the number of macromolecular ions produced per macromolecules electrosprayed. The model takes into account ESI droplet evaporation, macromolecular diffusion within the droplet, droplet fissions, and the statistical nature of the ESI process. Two idealized representations of macromolecular analytes were developed, describing cluster prone, droplet surface inactive macromolecules and droplet surface active macromolecules, respectively. It was found that surface active macromolecules are preferentially ionized over surface inactive cluster prone macromolecules when the initial droplet size is large and the analyte concentration in solution is high. Simulations showed that ESI efficiency decreases with increasing initial droplet size and analyte molecular weight, and is influenced by analyte surface activity, the properties of the solvent, and the variance of the droplet size distribution. Model predictions are qualitatively supported by experimental measurements of macromolecular electrospray ionization made previously. Overall, this study demonstrates the potential capabilities of Monte Carlo based ESI models. Future developments in such models will allow for more accurate predictions of macromolecular ESI intensity.  相似文献   

5.
The behavior of aqueous solutions of sodium bis(2‐ethylhexyl)sulfosuccinate (AOTNa) subject to electrospray ionization (ESI) has been investigated by molecular dynamics (MD) simulations at three temperatures (350, 500 and 800 K). We consider several types of water nanodroplets containing AOTNa molecules and composed of a fixed number of water molecules (1000), N0AOT AOT? anions (N0AOT = 0, 5, 10) and N0Na sodium ions (N0Na = 0, 5, 10, 15, 20): in a short time scale (less than 1 ns), the AOTNa molecules, initially forming direct micelles in the interior of the water nanodroplets, are observed in all cases to diffuse nearby the nanodroplet surface, so that the hydrophilic heads and sodium ions become surrounded by water molecules, whereas the alkyl chains lay at the droplet surface. Meanwhile, evaporation of water molecules and of solvated sodium ions occurs, leading to a decrease of the droplet size and charge. At 350 K, no ejection of neutral or charged surfactant molecules is observed, whereas at 500 K, some fragmentation occurs, and at 800 K, this event becomes more frequent. The interplay of all these processes, which depend on the values of temperature, N0AOT and N0Na eventually leads to anhydrous charged surfactant aggregates with prevalence of monocharged ones, in agreement with experimental results of ESI mass spectrometry. The quantitative analysis of the MD trajectories allows to evidence molecular details potentially useful in designing future ESI experimental conditions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Electroactive neutral compounds have been submitted to electrospray mass spectrometry analysis (ESI/MS) and their chemical reactivity has been studied by running preparative experiments in the spraying conditions of ESI/MS, with the aim of understanding mechanisms of ionization. In the negative mode, the electrospray mass spectrum of 9-bromo-10-nitroanthracene (BNA) showed only bromide anions. By spraying a solution of BNA under similar conditions onto a metallic plate, the whole residue could be collected then analyzed by GC/MS. The major neutral components were 9,10-anthraquinone (AO) and its monooxime derivative (ANOH), the chemical yield increasing with increasing dilution of the analyte in the bulk solution and being quantitative for submicromolar solutions. The selective transformation of BNA (9-bromo-10-nitroanthracene) into bromide anion and neutral oxidized derivatives suggests that preliminary electron transfers from metal to analyte at the capillary tip are followed by chemical transformations leading to products which are drawn within droplets to the collector. Compared to the time-scales successively involved in the electrospray process, the lifetime of the formerly produced anion radical (1 μs) is inferior by at least three orders of magnitude, suggesting that chemical transformations are likely to occur inside the electroactive capillary tip, before the expelling of the solution. Thus, on the basis of the known electrochemical behavior of BNA (9-bromo-10-nitroanthracene) in a neutral liquid phase solution, the result of its ESI/MS analysis could be accounted for.  相似文献   

7.
Many pharmaceutical genotoxic impurities are neutral molecules. Trace level analysis of these neutral analytes is hampered by their poor ionization efficiency in mass spectrometry (MS). Two analytical approaches including chemical derivatization and coordination ion spray-MS were developed to enhance neutral analyte detection sensitivity. The chemical derivatization approach converts analytes into highly ionizable or permanently charged derivatives, which become readily detectable by MS. The coordination ion spray-MS method, on the other hand, improves ionization by forming neutral-ion adducts with metal ions such as Na+, K+, or NH4+ which are introduced into the electrospray ionization source. Both approaches have been proven to be able to enhance the detection sensitivity of neutral pharmaceuticals dramatically. This article demonstrates the successful applications of the two approaches in the analysis of four pharmaceutical genotoxic impurities identified in a single drug development program, of which two are non-volatile alkyl chlorides and the other two are epoxides.  相似文献   

8.
Two peptides, bradykinin and gramicidin S, were used to investigate the relationship between protonation in the solution phase and charge state distribution observed in electrospray ionization (ES) mass spectra. The degree of protonation in solution was estimated using acid-base equilibrium calculations where possible. Protonation in solution was varied by adjusting pH, solvent composition and peptide concentration. Major disparities were observed between calculated solution-phase peptide protonation and the charge state distributions observed in ES mass spectra. The [(M + 2H)2+]/[(M + H)+] ratio calculated in solution was larger than the abundance ratio (M + 2H)2+ /(M + H)+ in the ES mass spectra of all acidic aqueous (pH < 6.5) and non-aqueous solutions; in basic aqueous solutions (pH > 9.5) the opposite was true. At high pH, electrophoretic droplet charging may reduce the activity of OH? in positively charged droplets. The results at low pH imply the existence of supplementary factors in the ES ionization process which largely attenuate the degree of charging in the gas phase as compared with solution. Factors such as the increasing intra- and intermolecular coulombic repulsion between charge carriers (protons) and increasing attractive forces between protonated sites and counterions at progressively later stages of charged droplet evaporation were hypothesized to be chiefly responsible for this effect. Non-aqueous solvents of high basicity compete with analytes to some extent for available protons, forming protonated solvent molecules while decreasing the sensitivity and the degree of multiple charging of peptides.  相似文献   

9.
Electrospray and Electrosonic Spray Ionization Mass Spectrometry (ESI-MS and ESSI-MS) have been widely used to report evidence that many chemical reactions in micro- and nano-droplets are dramatically accelerated by factors of ∼102 to 106 relative to macroscale bulk solutions. Despite electrospray''s relative simplicity to both generate and detect reaction products in charged droplets using mass spectrometry, substantial complexity exists in how the electrospray process itself impacts the interpretation of the mechanism of these observed accelerated rates. ESI and ESSI are both coupled multi-phase processes, in which analytes in small charged droplets are transferred and detected as gas-phase ions with a mass spectrometer. As such, quantitative examination is needed to evaluate the impact of multiple experimental factors on the magnitude and mechanisms of reaction acceleration. These include: (1) evaporative concentration of reactants as a function of droplet size and initial concentration, (2) competition from gas-phase chemistry and reactions on experimental surfaces, (3) differences in ionization efficiency and ion transmission and (4) droplet charge. We examine (1–4) using numerical models, new ESI/ESSI-MS experimental data, and prior literature to assess the limitations of these approaches and the experimental best practices required to robustly interpret acceleration factors in micro- and nano-droplets produced by ESI and ESSI.

The application of Electrospray and Electrosonic Spray Ionization Mass Spectrometry (ESI-MS and ESSI-MS) to study accelerated reaction kinetics in droplets is examined using numerical models, new experimental data, and prior literature.  相似文献   

10.
Composition of mobile phase can greatly influence the success of electrospray ionization (ESI)‐interfaced liquid chromatography–mass spectrometry analysis. To investigate the relationship between formic‐acid‐based modification of mobile phase and ESI nebulizing conditions, an API 4000 ESI source and a TSQ Quantum one were compared under the same chromatographic conditions. Ginkgo terpene lactones and flavonols were measured in plasma, which involved using ascorbic acid to circumvent cross‐interference between the analytes. ESI responses to using formic acid included changes in signal intensity, matrix effect, and upper limit of quantification. Significant disparities in the responses were observed between the two ESI sources, suggesting that the use of electrolyte modifier in liquid chromatography mobile phase and the pneumatic nebulization for ESI should be properly balanced to accomplish optimal ESI‐based analysis. The distribution of unpaired ions toward the surface of the initial droplet was assumed to be an important step in the pneumatic ESI process. When using the electrolyte in mobile phase, a too fast droplet reduction by rapid‐heating‐assisted pneumatic nebulization could negatively decrease the time available for the unpaired ions to migrate from droplet interior to its surface. Ascorbic acid was identified as a major interfering substance for the bioanalytical assay; the interference mechanism might be associated with hindering the unpaired analyte ions from distributing toward the droplet surface rather than outcompeting the analyte ions for the limited excess charge on droplets surface. The current work extends the knowledge base of pneumatic ESI, which has implication for optimal use of the ESI‐interfaced liquid chromatography–mass spectrometry technique. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
The electrospray (ES) ion source is a controlled-current electrolytic flow cell. Electrolytic reactions in the ES emitter capillary are continually ongoing to sustain the production of charged droplets and ultimately gas-phase ions from this device. Under certain circumstances, the analytes under study may be directly involved in these electrolytic processes. It is demonstrated that a simple means to minimize analyte electrolysis is to exchange the normal metal emitter capillary of commercial ES sources with one made of fused silica. This change is shown to provide an ES mass spectrometric system of similar performance in terms of gas-phase ion signal generated for non-electroactive analytes and also assures minimal oxidation of electroactive analytes even at low (2.0 microl x min(-1)) solution flow-rates and high (millimolar) solution electrolyte concentrations.  相似文献   

12.
The ability of polyprotic acids to give doubly charged ions in negative mode electrospray was studied and related to physicochemical properties of the acids via linear discriminant analysis (LDA). It was discovered that the compound has to be strongly acidic (low pK a1 and pK a2) and to have high hydrophobicity (logP ow) to become multiply charged. Ability to give multiply charged ions in ESI/MS cannot be directly predicted from the solution phase acidities. Therefore, for the first time, a quantitative model to predict the charge state of the analyte in ESI/MS is proposed and validated for small anions. Also, a model to predict ionization efficiencies of these analytes was developed. Results indicate that acidity of the analyte, its octanol-water partition coefficient, and charge delocalization are important factors that influence ionization efficiencies as well as charge states of the analytes. The pH of the solvent was also found to be an important factor influencing the ionization efficiency of doubly charged ions.
Graphical Abstract ?
  相似文献   

13.
Intrinsically disordered proteins (IDPs) in cells phase separate to form diverse membraneless organelles, which have condensed liquid droplet-like properties and often contain multiple IDPs. However, how potential interactions between different IDPs affect the dynamic behavior of these protein droplets is largely unknown. Here, we develop a rapid IDP clustering system to generate protein droplets with varied residue compositions and examine diverse interacting IDPs inside droplets. Three different IDP droplets actively recruited other diverse IDPs inside droplets with extremely varied enrichment (inside/outside) degrees (over 100-fold variation) under highly crowded conditions. The recruited IDPs were mostly mobile even inside highly immobile droplets. Among the five tested IDPs, the disordered region of Ddx4 helicase with its unique multiple charged residue blocks was noticeably influenced by droplet mobility. We also discovered that droplets of different IDPs could rapidly fuse to each other. Interestingly, some droplets were heterogeneously fused with segregated subcompartments, and this segregation was enhanced by droplet maturation and was more apparent for specific IDP pairs, in which the polar and charged residue compositions are highly different. The present study not only reports multiple peculiar behaviors of interacting IDP pairs inside droplets but also provides valuable information on generating membraneless organelle models with controllable droplet properties.

Membraneless droplets of intrinsically disordered proteins (IDPs) with varied residue compositions uniquely interact with each other as droplets and clients.  相似文献   

14.
A novel interface that allows normal-phase liquid chromatography to be coupled with electrospray ionization (ESI) is reported. A make-up solution of 60 mM ammonium acetate in methanol, infused at a 5 microl min(-1) flow-rate at the tip of the electrospray probe, provides a sheath liquid which is poorly miscible with the chromatographic effluent, but promotes efficient ionization of the targeted analytes. Protonated molecules generated in the ESI source were subjected to tandem mass spectrometric experiments in a triple-quadrupole mass spectrometer. The main fragmentation reactions were characterized for each analyte and specific mass spectral transitions were used to acquire chromatographic data in the multiple reaction monitoring detection mode. Results obtained during optimization of the sheath liquid composition and flow-rate suggest that the electrospray process was mainly under the control of the make-up solution, and that it forms an external charged layer around a neutral chromatographic mobile phase core. This sheath liquid interface was implemented for the analysis of some neoflavonoid compounds and its performance was evaluated. Limits of detection were established for calophillolide, inophyllum B, inophyllum P and inophyllum C at 100, 25, 15 and 100 ng ml(-1), respectively.  相似文献   

15.
The ionization and transmission efficiencies of an electrospray ionization (ESI) interface were investigated to advance the understanding of how these factors affect mass spectrometry (MS) sensitivity. In addition, the effects of the ES emitter distance to the inlet, solution flow rate, and inlet temperature were characterized. Quantitative measurements of ES current loss throughout the ESI interface were accomplished by electrically isolating the front surface of the interface from the inner wall of the heated inlet capillary, enabling losses on the two surfaces to be distinguished. In addition, the ES current lost to the front surface of the ESI interface was spatially profiled with a linear array of 340-microm-diameter electrodes placed adjacent to the inlet capillary entrance. Current transmitted as gas-phase ions was differentiated from charged droplets and solvent clusters by measuring sensitivity with a single quadrupole mass spectrometer. The study revealed a large sampling efficiency into the inlet capillary (>90% at an emitter distance of 1 mm), a global rather than a local gas dynamic effect on the shape of the ES plume resulting from the gas flow conductance limit of the inlet capillary, a large (>80%) loss of analyte ions after transmission through the inlet arising from incomplete desolvation at a solution flow rate of 1.0 microL/min, and a decrease in analyte ions peak intensity at lower temperatures, despite a large increase in ES current transmission efficiency.  相似文献   

16.
We study systematically the charging and release mechanisms of a flexible macromolecule, modeled by poly(ethylene glycol) (PEG), in a droplet by using molecular dynamics simulations. We compare how PEG is solvated and charged by sodium Na+ ions in a droplet of water (H2O), acetonitrile (MeCN), and their mixtures. Initially, we examine the location and the conformation of the macromolecule in a droplet bearing no net charge. It is revealed that the presence of charge carriers do not affect the location of PEG in aqueous and MeCN droplets compared with that in the neutral droplets, but the location of the macromolecule and the droplet size do affect the PEG conformation. PEG is charged on the surface of a sodiated aqueous droplet that is found close to the Rayleigh limit. Its charging is coupled to the extrusion mechanism, where PEG segments leave the droplet once they coordinate a Na+ ion or in a correlated motion with Na+ ions. In contrast, as PEG resides in the interior of a MeCN droplet, it is sodiated inside the droplet. The compact macro-ion transitions through partially unwound states to an extended conformation, a process occurring during the final stage of desolvation and in the presence of only a handful of MeCN molecules. For charged H2O/MeCN droplets, the sodiation of PEG is determined by the H2O component, reflecting its slower evaporation and preference over MeCN for solvating Na+ ions. We use the simulation data to construct an analytical model that suggests that the droplet surface electric field may play a role in the macro-ion–droplet interactions that lead to the extrusion of the macro-ion. This study provides the first evidence of the effect of the surface electric field by using atomistic simulations.
Graphical Abstract ?
  相似文献   

17.
The mechanisms whereby protein ions are liberated from charged droplets during electrospray ionization (ESI) remain under investigation. Compact conformers electrosprayed from aqueous solution in positive ion mode likely follow the charged residue model (CRM), which envisions analyte release after solvent evaporation to dryness. The concentration of nonvolatile salts such as NaCl increases sharply within vanishing CRM droplets, promoting nonspecific pairing of Cl- and Na+ with charged groups on the protein surface. For unfolded proteins, it has been proposed that ion formation occurs via the chain ejection model (CEM). During the CEM proteins are expelled from the droplet long before complete solvent evaporation has taken place. Here we examine whether salt adduction levels support the view that folded and unfolded proteins follow different ESI mechanisms. Solvent evaporation during the CEM is expected to be less extensive and, hence, the salt concentration at the point of protein release should be substantially lower than for the CRM. CEM ions should therefore exhibit lower adduction levels than CRM species. We explore the adduction behavior of several proteins that were chosen to allow comparative studies on folded and unfolded structures in the same solution. In-source activation eliminates chloride adducts via HCl release, generating protein ions that are heterogeneously charged because of sodiation and protonation. Sodiation levels measured under such conditions provide estimates of the salt adduction behavior experienced by the “nascent” analyte ions. Sodiation levels are significantly reduced for unfolded proteins, supporting the view that these species are indeed formed via the CEM.
Figure
?  相似文献   

18.
Electron impact ionization of helium nano-droplets containing several 104 He atoms and doped with CCl4 or SF6 molecules is studied with high-mass resolution. The mass spectra show significant clustering of CCl4 molecules, less so for SF6 under our experimental conditions. Positive ion efficiency curves as a function of electron energy indicate complete immersion of the molecules inside the helium droplets in both cases. For CCl4 we observe the molecular parent cation CCl4+ that preferentially is formed via Penning ionization upon collisions with He*. In contrast, no parent cation SF6+ is seen for He droplets doped with SF6. The fragmentation patterns for both molecules embedded in He are compared with gas phase studies. Ionization via electron transfer to He+ forms highly excited ions that cannot be stabilized by the surrounding He droplet. Besides the atomic fragments F+ and Cl+ several molecular fragment cations are observed with He atoms attached.  相似文献   

19.
This review reports the results of some studies carried out by us on the role of pneumatic aspects in electrospray and desorption electrospray surface ionization, with the aim to propose some relevant aspects of the mechanisms involved in these ionization methods. Electrospray ion sources, with the exception of the nano- electrospray source, operate with the concurrent action of a strong electrical field and a supplementary coaxial gas flow. The electrical field is responsible for electrospraying of the analyte solution but the use of a coaxial gas flow leads to a significant increase of the analyte signal and allows the use of higher solution flows. However, by employing capillary voltages much lower than those necessary to activate the electrospray phenomenon, analyte ions are still observed and this indicates that different mechanisms must be operative for ion production. Under these conditions, ion generation could take place from the neutral pneumatically sprayed droplet by field-induced droplet ionization. Also in the case of desorption electrospray ionization (DESI), and without any voltage on the spraying capillary as well as on the surface of interest, ions of analytes present on the surface become detectable and this shows that desorption/ionization of analytes occurs by neutral droplets impinging the surface. Consequently, the pneumatic effect of the impinging droplets plays a relevant role, and for these reasons the method has been called pneumatic assisted desorption (PAD). Some analogies existing between PAD and surface activated chemical ionization (SACI), based on the insertion of a metallic surface inside an atmospheric pressure chemical ionization source operating without corona discharge, are discussed.  相似文献   

20.
In this study, a polarization‐induced electrospray ionization mass spectrometry (ESI‐MS) was developed. A micro‐sized sample droplet was deposited on a naturally available dielectric substrate such as a fruit or a stone, and then placed close to (~2 mm) the orifice of a mass spectrometer applied with a high voltage. Taylor cone was observed from the sample droplet, and a spray emitted from the cone apex was generated. The analyte ion signals derived from the droplet were obtained by the mass spectrometer. The ionization process is similar to that in ESI although no direct electric contact was applied on the sample site. The sample droplet polarized by the high electric field provided by the mass spectrometer initiated the ionization process. The dielectric sample loading substrate facilitated further the polarization process, resulting in the formation of Taylor cone. The mass spectral profiles obtained via this approach resembled those obtained using ESI‐MS. Multiply charged ions dominated the mass spectra of peptides and proteins, whereas singly charged ions dominated the mass spectra of small molecules such as amino acids and small organic molecules. In addition to liquid samples, this approach can be used for the analysis of solid and viscous samples. A small droplet containing suitable solvent (5–10 µl) was directly deposited on the surface of the solid (or viscous) sample, placed close the orifice of mass spectrometer applied with a high voltage. Taylor cone derived from the droplet was immediately formed followed by electrospray processes to generate gas‐phase ions for MS analysis. Analyte ions derived from the main ingredients of pharmaceutical tablets and viscous ointment can be extracted into the solvent droplet in situ and observed using a mass spectrometer. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号