首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Organoclays are significant for providing a mechanism for the adsorption of organic molecules from potable water. As such their thermal stability is important. A combination of thermogravimetric analysis and infrared emission spectroscopy was used to determine this stability. Infrared emission spectroscopy (IES) was used to investigate the changes in the structure and surface characteristics of water and surfactant molecules in montmorillonite, octadecyltrimethylammonium bromide and organoclays prepared with the surfactant octadecyltrimethylammonium bromide with different surfactant loadings. These spectra collected at different temperatures give support to the results obtained from the thermal analysis and also provide additional evidence for the dehydration which is difficult to obtain by normal thermoanalytical techniques. The spectra provide information on the conformation of the surfactant molecules in the clay layers and the thermal decomposition of the organoclays. Infrared emission spectroscopy proved to be a useful tool for the study of the thermal stability of the organoclays.  相似文献   

2.
Organoclays are used in cleaning natural waters from dissolved hydrocarbons by secondary sorption. Aiming future applications in this field, a Brazilian polycationic bentonite was used to prepare HDTMA organoclays, by using different quaternary ammonium salt loadings and clay content slips, to evaluate how these conditions may affect their sorption properties. The organoclays were characterized by CHN analysis, X-ray diffraction, thermogravimetry, and differential thermal analysis. For secondary sorption tests, to compare with published studies, toluene was used as a reference sorbate. Characterization and sorption results indicate that the Brazilian bentonite organoclays prepared in this study have a potential industrial use in environmental applications.  相似文献   

3.
Organoclays are usually used as sorbents to reduce the spread of organic compounds and to remove them at contaminated sites. The sorption equilibrium and the mechanisms of volatile organic compounds (VOCs) on organoclays under different humidities are helpful for developing efficient organoclays and for predicting the fate of VOCs in the environment. In this study, the organoclay was synthesized through exchanging inorganic cations by hexadecyltrimethyl ammonium (HDTMA) into montmorillonite, resulting in 12?% of organic content. The surface area of organoclay was smaller than the unmodified clay due to the incorporation of organic cations into the interlayer. Both adsorption on organoclay surface and partition into the incorporated HDTMA in organoclay played roles on the sorption process. Compared the sorption coefficients in montmorillonite and different modified clays, the incorporated organic cations overcame the inhibition effect of hydrophilic surface of clay on the sorption process of hydrophobic organic compounds from water. The sorption coefficients of VOC vapors on organoclay were further characterized using a linear solvation energy relationship (LSER). The fitted LSER equations were obtained by a multiple regression of the sorption coefficients of 22 probe chemicals against their solvation parameters. The coefficients of the five-parameter LSER equations showed that high HDTMA-content montmorillonite interacts with VOC molecules mainly through dispersion, partly through dipolarity/polarizability and hydrogen-bonds as well as with negative π-/n-electron pair interaction. The interaction analysis by LSERs suggests that the potential predominant factors governing the sorption of VOCs are dispersion interactions under all tested humidity conditions, similar with the lower level modified clay. The derived LSER equations successfully fit the sorption coefficients of VOCs on organoclay under different humidity conditions. It is helpful to design better toxic vapor removal strategy and evaluate the fate of organic contaminants in the environment.  相似文献   

4.
The microstructure, thermal stability, surface energy, and swelling characteristics of two kinds of commercial organoclays, before and after washing treatment with a mixture of H2O/ethanol, were investigated using X-ray diffraction (XRD), thermogravimetric analysis (TG/DTG), wettability measurement, and swelling measurement. This study demonstrates that the external-surface physically adsorbed surfactant can be removed after washing treatment, resulting in an increase in thermal stability and a decrease in surface energy of the resultant organoclays. Organoclays are difficult to be introduced into a solvent when their surface energies are lower than that of the solvent. On the other hand, the organoclay with gamma(organoclay) < gamma(solvent) is easier to be swollen and expandable by the solvent. The swelling and basal spacing measurements of the organoclays introduced into organic media indicate that the swelling factor and the interlayer swelling are two independent parameters. Both the polar character of the solvent and the swelling capacity of clay have a prominent effect on the interlayer swelling of the organoclays.  相似文献   

5.
In this study, organoclays were prepared through ion exchange of a single cationic surfactant, hexadecyltrimethylammonium bromide and characterised by a range of methods including X-ray diffraction (XRD) and thermogravimetric analysis. Changes in the surface properties of montmorillonite and the organoclays were observed and the basal spacings of organoclays with and without p-nitrophenol were determined using XRD. The thermal stability of both organoclays were measured using thermogravimetry. As the surfactant loading increased, the expanded basal spacings were observed, and different molecular configurations of surfactant were identified. When the surfactant loading exceeded 1.0 CEC, surfactant molecules tend to adsorb strongly on the clay surface and this resulted in increased affinity to organic compounds. The adsorbed p-nitrophenol and the surfactant decomposed simultaneously. Hence, the surfactant molecules and adsorbed p-nitrophenol are important in determining the thermal stabilities of organoclays. This study enhances the understanding of the structure and adsorption properties of organoclays and has further implications for the application of organoclays as filter materials for the removal of organic pollutants in aqueous solutions.  相似文献   

6.
Paraquat adsorption onto clays and organoclays from aqueous solution   总被引:6,自引:0,他引:6  
Clays were compared with organoclays for the sorption of paraquat from aqueous solution. Sepiolite (S), bentonite (B), and illite (I) were used as clay samples. Organoclays were prepared by the modification of the clays with nonyl- and dodecylammonium chlorides, denoted as NS, DS, NB, DB, NI, and DI, respectively. Specific surface area and pore size distribution of the samples were determined by N2 adsorption-desorption at 77 K using the BET method. X-ray powder diffraction analysis of the samples was used to determine the effects of modifying agents on the layer structure of the clays. In the adsorption experiments, C(m) values increased from 0.038 mmol/g for DS to 0.223 mmol/g for NI. Kd0.3 values ranged from 0.177 for DS to 0.843 for NI. The adsorption data indicated that illite and NI are the most effective adsorbents among these clays and organoclay samples, respectively.  相似文献   

7.
Organoclays were synthesized by the ion exchange of cationic surfactants containing single, double and triple alkyl chains for sodium ions in an aqueous suspension of Wyoming Na-montmorillonite. The characterization of organoclays with and without adsorbed phenol was determined by X-ray diffraction, TEM and thermal analysis. Differences in the surfaces and in the interlayer of the mono, di and tri alkyl chain organoclays resulted in differences in the adsorption efficiency for phenol with tri > di > mono > Na-Mt. The results prove that organoclays can be effective for the removal of phenol from an aqueous solution and this removal is a function of the surfactant molecule and its concentration. In general, the higher the concentration as measured by the CEC value and the greater the number of alkyl chains in the surfactant molecule, the greater the percentage of the phenol that is removed.  相似文献   

8.
Organoclays with various contents of hydroxyl groups and absorbed ammonium were prepared and compounded with poly(ethylene terephthalate) (PET), forming PET/clay nanocomposites via melt extrusion. Dilute solution viscosity techniques were used to evaluate the level of molecular weight of PET/clay nanocomposites. Actually, a significant reduction in PET molecular weight was observed. The level of degradation depended on both the clay structure and surfactant chemistry in organoclays. The composites, based on clay with larger amount of hydroxyl groups on the edge of clay platelets, experienced much more degradation, because the hydroxyl groups acted as Brønsted acidic sites to accelerate polymer degradation. Furthermore, organoclays with different amounts of absorbed ammonium led to different extents of polymer degradation, depending upon the acidic sites produced by the Hofmann elimination reaction of ammonium. In addition, the composite with better clay dispersion state, which was considered as an increasing amount of clay surface and ammonium exposed to the PET matrix, experienced polymer degradation more seriously. To compensate for polymer degradation during melt extrusion, pyromellitic dianhydride (PMDA) was used as chain extender to increase the intrinsic viscosity of polymer matrix; more importantly, the addition of PMDA had little influence on the clay exfoliation state in PET/clay nanocomposites.  相似文献   

9.
The thermal behaviour of organoclays, and especially their organic treatment, is an important issue in polymer nanocomposite preparation and their fire retardant properties. The thermal behaviour of the organomodifier is strongly affected by the different composition parameters of the clays. Thus the thermal degradation, in inert and in oxidative atmosphere, of natural montmorillonite and synthetic fluorohectorite both exchanged with polar and non-polar organomodifiers was studied using a combined thermogravimetry/Fourier transform infrared and a flash pyrolysis GC-MS system. Decomposition and charring mechanisms of the organic molecules in the clays are proposed for each kind of clay and a relationship between the composition of the clays and the kinetics of the decomposition reactions is found. Furthermore, it is shown that the charring-volatilization competition on heating organoclays in the presence of oxygen depends on the structure of the clay, the confined or unconfined position of the organic molecules and their polarity.  相似文献   

10.
Organoclays were synthesised through ion exchange of a single surfactant for sodium ions, and characterised by a range of method including X-ray diffraction (XRD), BET, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM). The change in surface properties of montmorillonite and organoclays intercalated with the surfactant, tetradecyltrimethylammonium bromide (TDTMA) were determined using XRD through the change in basal spacing and the expansion occurred by the adsorbed p-nitrophenol. The changes of interlayer spacing were observed in TEM. In addition, the surface measurement such as specific surface area and pore volume was measured and calculated using BET method, this suggested the loaded surfactant is highly important to determine the sorption mechanism onto organoclays. The collected results of XPS provided the chemical composition of montmorillonite and organoclays, and the high-resolution XPS spectra offered the chemical states of prepared organoclays with binding energy. Using TGA and FT-IR, the confirmation of intercalated surfactant was investigated. The collected data from various techniques enable an understanding of the changes in structure and surface properties. This study is of importance to provide mechanisms for the adsorption of organic molecules, especially in contaminated environmental sites and polluted waters.  相似文献   

11.
Differential thermal analysis (DTA) was the first thermal analysis technique used to qualitatively characterize natural clays and respective curves has been used since more than 60 years as their ‘fingerprint’. With the development of microprocessed equipments in the last decades, derivative thermogravimetric (DTG) curves also may be used for this purpose in some cases, which also may allow a quantitative characterization of clay components. TG and DTG curves are more indicated than DTA or DSC curves to identify and to better analyze the several decomposition steps of natural or synthetic organoclays. These questions are discussed in applications developed to characterize Brazilian kaolinitic clays, bentonites and organophilic clays.  相似文献   

12.
Six kinds of organoclays were prepared through three kinds of polyols (PTMG, PEA and PCL) to investigate the effects of molecular weight and the chemical structure of organifiers. PTMG based organoclays showed higher ion-exchanged fraction than other organoclays and long chain organifier showed better efficiency in ion-exchanged fraction in the case of PTMG based organifiers. From WAXD and TEM analysis, it was confirmed that PTMG based organoclays formed partially exfoliated or fully exfoliated silicate layer structures. PDLA/clay nanocomposites were prepared by in-situ ring-opening polymerization of D-lactide with PTMG based organoclays as macro-initiators in the presence of equimolar Sn(Oct)2/PPh3 complex catalysts. The molecular weight of PDLA/clay nanocomposite decreased as increasing the feeding amount of organoclay because organoclay had hydroxyl terminal groups which can initiate the ring-opening polymerization of D-lactide. From TGA analysis, thermal stabilities of PDLA/clay nanocomposites improved with increasing organoclay content. From WAXD and TEM analysis, organoclay which was prepared by high molecular weight of PTMG based organifier was effective on the exfoliation of silicate layers in the in-situ polymerized PDLA/clay nanocomposite.  相似文献   

13.
Water purification is imperative for the welfare of a healthy population. Water is widely contaminated by recalcitrant organic chemicals such a pesticides, herbicides and hormones. One inexpensive method for purifying water from these types of molecules is through adsorption. One suite of materials for this adsorption is based upon organoclays. This paper reviews the adsorption of organics on organoclays.  相似文献   

14.
Morphology, thermal and rheological properties of polymer‐organoclay composites prepared by melt‐blending of polystyrene (PS), poly(methyl methacrylate) (PMMA), and PS/PMMA blends with Cloisite® organoclays were examined by transmission electron microscopy, small‐angle X‐ray scattering, secondary ion mass spectroscopy, differential scanning calorimetry, and rheological techniques. Organoclay particles were finely dispersed and predominantly delaminated in PMMA‐clay composites, whereas organoclays formed micrometer‐sized aggregates in PS‐clay composites. In PS/PMMA blends, the majority of clay particles was concentrated in the PMMA phase and in the interfacial region between PS and PMMA. Although incompatible PS/PMMA blends remained phase‐separated after being melt‐blended with organoclays, the addition of organoclays resulted in a drastic reduction in the average microdomain sizes (from 1–1.5 μm to ca. 300–500 nm), indicating that organoclays partially compatibilized the immiscible PS/PMMA blends. The effect of surfactant (di‐methyl di‐octadecyl‐ammonia chloride), used in the preparation of organoclays, on the PS/PMMA miscibility was also investigated. The free surfactant was more compatible with PMMA than with PS; the surfactant was concentrated in PMMA and in the interfacial region of the blends. The microdomain size reduction resulting from the addition of organoclays was definitely more significant than that caused by adding the same amount of free surfactant without clay. The effect of organoclays on the rheological properties was insignificant in all tested systems, suggesting weak interactions between the clay particles and the polymer matrix. In the PS system, PMMA, and organoclay the extent of clay exfoliation and the resultant properties are controlled by the compatibility between the polymer matrix and the surfactant rather than by interactions between the polymer and the clay surface. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 44–54, 2003  相似文献   

15.
Four organic-modified clays based on a SWy-2 montmorillonite were prepared by embedding ammonium organic derivatives with different chelating functionalities (NH(2), COOH, SH or CS(2)) in the interlayer space of montmorillonite. Organic molecules such as (a) hexamethylenediamine, (b) 2-(dimethylamino)ethenethiol, (c) 5-aminovaleric acid and (d) hexamethylenediamine-dithiocarbamate were used for the clay modification in order to study the effect of the chelating functionality on heavy metal ions binding from aqueous solutions. The organoclays were characterized by powder X-ray diffraction (XRD), infrared (FTIR) and NMR spectroscopies. The experimental data showed that the organic molecules are intercalated into the interlamelar space with the long dimension parallel to the clay sheets. Their sorbing properties were evaluated for the removal of heavy metals, Pb, Cd and Zn, from aqueous solutions as a function of the pH. When compared with the unmodified SWy-2 montmorillonite, the modified clays show significant improvement in terms of sorbing selectivity as well as of metal loading capacity. The fit to adsorption data by a Surface Complexation Model shows that the intercalated molecules act as specific binding sites in the clay. These contribute additional sorption capacity which is additive to the variable charge edge-sites of the clay in competition with the permanent charge sites.  相似文献   

16.
Thermal analysis and differential thermal analysis offers a novel means of studying the desorption of acids such as stearic acid from clay surfaces. Both adsorption and chemisorption can be distinguished through the differences in the temperature of mass losses. Increased adsorption is achievable by adsorbing onto a surfactant adsorbed montmorillonite. Stearic acid sublimes at 179 °C but when adsorbed upon montmorillonite sublimes at 207 and 248 °C. These mass loss steps are ascribed to the desorption of the stearic acid on the external surfaces of the organoclays and from the de-chemisorption from the surfactant held in the interlayer of the montmorillonite.  相似文献   

17.
In this study, mono- and di-alkyl cationic surfactants were used to prepare organoclays through ion exchange and the prepared organoclays were characterised by X-ray diffraction (XRD) and thermogravimetric analysis (TG). Larger basal spacings were observed in the interlayer of the organoclays intercalated with DDDMA than organoclays intercalated with DDTMA. The DTG curves identify the thermal stability of organoclays intercalated with two different types of surfactants (DDTMA and DDDMA) and the different arrangements of the surfactant molecules intercalated in the montmorillonite. Both organoclays intercalated with organic surfactant molecules proved to be thermally stable at high temperature. This study provides an understanding of the structure and properties of organoclays, which will enhance the potential applications of organoclays in environmental remediation.  相似文献   

18.
This paper aims at showing the interest of organoclays (clay minerals containing organic groups covalently attached to the inorganic particles) as suitable host matrices likely to immobilize enzymes onto electrode surfaces for biosensing applications. The organoclays used in this work were natural Cameroonian smectites grafted with either aminopropyl (AP) or trimethylpropylammonium (TMPA) groups. The first ones were exploited for their ability to anchor biomolecules by covalent bonding while the second category exhibited favorable electrostatic interactions with negatively charged enzymes due to ion exchange properties that were pointed out here by means of multisweep cyclic voltammetry. AP-clay materials were applied to the immobilization of glucose oxidase (GOD) and TMPA-clays for polyphenol oxidase (PPO) anchoring. When deposited onto the surface of platinum or glassy carbon electrodes as enzyme/organoclay films, these systems were evaluated as biosensing electrochemical devices for detection of glucose and catechol chosen as model analytes. The advantageous features of these organoclays were discussed by comparison to the performance of related film electrodes made of non-functionalized clays. It appeared that organoclays provide a favorable environment to enzymes activity, as highlighted from the biosensors characteristics and determination of Michaelis-Menten constants.  相似文献   

19.
The adsorption of the anionic dye congo-red (CR) by Na-, Cs-, Mg-, Al- and Fe-montmorillonite was studied by simultaneous DTA-TG. Thermal analysis curves of adsorbed CR were compared with those of neat CR. The oxidation of neat CR is completed below 570°C. Thermal analysis curves of adsorbed CR show three regions representing dehydration of the clay, oxidation of the organic dye and dehydroxylation of the clay together with the oxidation of residual organic matter. The oxidation of the dye begins at about 250°C with the transformation of organic H atoms into water and carbon into charcoal. Two types of charcoal are obtained, low-temperature and high-temperature stable charcoal. The former gives rise to an exothermic peak in the second region of the thermal analysis and the latter in the third region. The exchangeable metallic cation determines the ratio between the low-temperature and high-temperature stable charcoal, which is formed. With increasing acidity of the exchangeable metallic cation higher amounts of high-temperature stable charcoal are obtained. It was suggested that aromatic compounds p bonded to the oxygen plane of the clay framework are converted into charcoal, which is burnt at about 550-700°C. With increasing surface acidity of the clay more species of CR are protonated. Only protonated dye species can form p bonds with oxygen plane and are converted to high-temperature stable charcoal during the thermal analysis. The thermal behavior of the dye complex of Cu-montmorillonite is different probably due to the catalytic effect of Cu. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Surfaces of Wyoming SWy-2-Na-montmorillonite were modified using ultrasonic and hydrothermal methods through the intercalation and adsorption of the cationic surfactant octadecyltrimethylammonium bromide (ODTMA). Changes in the surfaces and structure were characterized using X-ray diffraction (XRD), thermal analysis (TG), and electron microscopy. The ultrasonic preparation method results in a higher surfactant concentration within the montmorillonite interlayer when compared with that from the hydrothermal method. Three different molecular environments for surfactants within the surface-modified montmorillonite are proposed upon the basis of their different decomposition temperatures. Both XRD patterns and TEM images demonstrate that SWy-2-Na-montmorillonite contains superlayers. TEM images of organoclays prepared at high surfactant concentrations show alternate basal spacings between neighboring layers. SEM images show that modification with surfactant reduces the clay particle size and aggregation. Organoclays prepared at low surfactant concentration display curved flakes, whereas they become flat with increasing intercalated surfactant. Novel surfactant-modified montmorillonite results in the formation of new nanophases with the potential for the removal of organic impurities from aqueous media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号