首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work investigated the effect of using Kenaf bast fibre kraft pulps compared to Scotch Pine kraft pulps for producing microfibrillated cellulose (MFC) and its employment for improving mechanical and physical properties of handsheets made from unbleached kraft hardwood pulp. It was shown that MFC based on Kenaf fibres can be produced at higher consistencies [>5 % (w/w)] compared to when Scotch Pine is employed [≈2 % (w/w)] as raw material. The possibility of using a higher consistency when processing Kenaf is beneficial for the processing in microfluidizers. The rheological properties of the products were shown to be consistent with what is known for MFC-based systems. The studies indicate that the mechanical properties of handsheets from unbleached kraft hardwood pulp can be improved by replacing part of the unbleached kraft hardwood pulp fibres with either unbleached kraft Kenaf pulp or unbleached Scotch Pine kraft pulp. However, the same levels of improvements were obtained when using only a small amount [≈6 % (w/w)] of MFC based on Kenaf or Scotch Pine, when introduced into the system either as a dry strength additive or by coating pre-made handsheets. Finally, it was shown that the incorporation of MFC in handsheets decreases the air-permeability; this effect became amplified when the MFC was applied as a coating onto the handsheets.  相似文献   

2.
Flexibility and modulus of elasticity data for two types of wet cellulose fibres using a direct force–displacement method by means of AFM are reported for never dried wet fibres immersed in water. The flexibilities for the bleached softwood kraft pulp (BSW) fibres are in the range of 4–38 × 1012 N?1 m?2 while the flexibilities for the thermomechanical pulp (TMP) fibres are about one order of magnitude lower. For BSW the modulus of elasticity ranges from 1 to 12 MPa and for TMP between 15–190 MPa. These data are lower than most other available pulp fibre data and comparable to a soft rubber band. Reasons for the difference can be that our measurements with a direct method were performed using never dried fibres immersed in water while other groups have employed indirect methods using pulp with different treatments.  相似文献   

3.
This study compares the suitability of using birch kraft pulp or softwood kraft pulp in the preparation of TEMPO-oxidized pulp, MFC and superabsorbent foam. TEMPO oxidation was performed using five different dosages of primary oxidant. The time of disintegration treatment was varied to study its influence on the properties of the produced MFCs and foams. Both the birch and the softwood pulps could be used for producing superabsorbent foams, depending on the process conditions, the absorption capacities were about the same for the two pulps and varied between 25 and 55 g saline solution/g absorbent. The foams based on birch pulp had, however, on average, 30 % higher retention capacity than the foams based on softwood pulp. The maximum retention capacity obtained was 16.6 g saline solution/g absorbent. The greater retention capacity of birch-based foams is not fully understood, but a smaller pore size may be the reason, which in turn would generate greater capillary forces. In addition to this, it was found that birch pulps, contrary to softwood pulps, had a substantial amount of fibers that were relatively unaffected by the disintegration treatment. These oxidized fibers are likely to reinforce the foam, thereby making the foam more resistant to external pressures, which is in accordance with earlier findings.  相似文献   

4.
This study centred on the analysis of lignin in situ of cloned eucalypt and pine kraft pulps. Trametes versicolor laccase-violuric acid system (LMS) delignifications were performed on a softwood (Pinus pinaster) and a hardwood (Eucalyptus globulus) conventional kraft pulp with an initial kappa number of 34.5 and 15.5, respectively. The LMS treated pulps were then subjected to alkaline extraction stages (E). The kappa number data show that LMS is effective at biodelignifying both softwood and hardwood kraft pulps. However, under the conditions employed in this study, a greater level of biodelignification was obtained with LMS E. globulus (hardwood) than with LMS P. pinaster (softwood), but the amount of lignin removed was higher for the softwood pulp. The original milled wood samples, kraft pulps, biodelignified kraft pulps, and isolated residual lignin and milled wood lignins from the two wood samples have been characterized by pyrolysis-gas chromatography/mass spectrometry. The analysis of the pyrograms indicates that the lignin compositions of the two wood species and corresponding pulps are very different, as expected; however, the knowledge of the chemical mechanisms of delignification is very limited and requires additional work. Analytical pyrolysis is one the few degradative methods for the analysis of biopolymers that has shown a sufficient degree of success.  相似文献   

5.
The hygroexpansion of paper was significantly reduced, up to 28% lower amplitude of change when the paper was subjected to a change in relative humidity from 20 to 85% RH, by oxidation of the fibre wall. Never-dried bleached kraft fibres were oxidised with sodium periodate, which specifically oxidises the C2–C3 bond of 1,4-glucans so that the cellulose is partly converted into dialdehyde cellulose. Since both the dry and wet strength of laboratory sheets were significantly improved, the dry tensile strength increased from 24 kNm/kg up to 66 kNm/kg and the relative wet tensile strength increased from 1.5% up to 40%, it is suggested that the aldehydes form hemiacetal linkages within the fibre wall during the consolidation and drying of the sheets. The mechanical, hygroexpansive and moisture sorptive properties of the sheets made from the oxidised fibres were studied. The results showed that the main reason for the reduced hygroexpansion was a decrease in moisture sorptivity, i.e. when the sheets made of fibres with different degrees of cross-linking were subjected to the same change in relative humidity, the more cross-linked fibres showed a smaller change in moisture content. It was also shown that the hygroexpansion coefficient, i.e. the moisture-normalised dimensional change, was not significantly changed by the periodate oxidation, i.e. indicating that there are no improvement in dimensional stability if the paper is subjected to a specific amount of water.  相似文献   

6.
The paper deals with the displacement washing of unbleached pulp cooked from rapeseed straw by soda pulping under laboratory conditions. Pulp fibres were characterised by their average length, as well as by effective specific volume and surface. Using the step function input change method, the washing breakthrough curves measured for alkali lignin as a tracer were described by the dispersed plug flow model containing a dimensionless criterion, the Péclet number. Besides the wash yield, the dispersion coefficient as well as the mean residence time and space time were evaluated. Preliminary results obtained for soda rapeseed pulp were compared with those for kraft hardwood (beech) and softwood (spruce, pine) pulps published earlier. The wash yield measured for soda pulp was found to be lower than that for hardwood and softwood pulps which manifested lower hydraulic resistance. The presence of silique valves in rapeseed straw resulted in lower mean residence time of lignin removed from the pulp bed in comparison with pulp manufactured from stalks only.  相似文献   

7.
Three Norway spruce pulps were produced using different kraft pulping methods, in order to obtain large differences in cellulose and hemicellulose proportions at a similar lignin content. The hemicellulose content in the three pulps varied between 10% and 22%. The aim of the study was to evaluate the influence of cellulose and hemicellulose on fibre ultrastructure and correlate this with the differences observed in the mechanical properties between the pulps. The ultrastructure of the pulp fibres were studied using Field Emission Scanning Electron Microscopy (FE-SEM) and Solid-State Cross Polarisation Magic Angle Spinning Carbon-13 Nuclear Magnetic Resonance (CP/MAS 13C-NMR) in combination with spectral fitting. CP/MAS 13C-NMR measured the average bulk properties of the pulp fibres, while FE-SEM allowed for observations on the ultrastructure of fibre surfaces. The ultrastructure of the fibres varied with varying hemicellulose content. The pulp with a high hemicellulose content had a porous surface structure. In fibres with a low hemicellulose content, the fibril aggregates (macrofibrils) formed a much more compact surface structure. With CP/MAS 13C-NMR this change was reflected by an increase in average fibril aggregate width with decreasing hemicellulose content. Results from FE-SEM and CP/MAS 13C-NMR correlated well. The changes recorded in ultrastructure may explain the very different mechanical properties reported previously for pulps with different hemicellulose content.  相似文献   

8.
This research aims to develop new materials based on renewable resources that can fulfill the functions necessary in the absorption core of a disposable diaper. Absorbent foam was recently produced from softwood kraft pulp by TEMPO oxidation, disintegration and freeze drying. In this study, the TEMPO-oxidized MFC was mixed with pulp fibres, thus forming a cellulosic composite, in an attempt to improve the mechanical stability of the freeze-dried absorbent material. The fibres were added in different amounts and the freeze-dried materials were evaluated for their absorption and retention properties. The results of this study suggest that the composite material has a better mechanical stability than the absorbent foam without fibres. It was shown that using spruce CTMP fibres in the composite resulted in better absorption and retention capacities than in a composite with softwood kraft pulp fibres. The higher stiffness of the CTMP fibres is a probable explanation for this difference. For the composite material with CTMP fibres, liquid porosimetry showed that pore size distribution was more or less retained when put under load. Furthermore, it was seen that the retention properties reached a maximum around 85 % CTMP fibres and 15 % TEMPO-oxidized MFC. In the centrifuge retention test, the retention of the TEMPO-oxidized MFC in the composite material reached about the same capacity as conventional superabsorbent polymers.  相似文献   

9.
10.
The effect of two different cellulases on the hornification phenomenon,in which drainability (Schopper–Riegler method) and mechanical propertiesdiminish when pulps are dried, was studied. The enzyme applications testedincluded a commercial enzyme named ComC (Pergalase A40 from CIBA) and alaboratory enzyme from Paenibacillus sp. strain BP-23namedCelB. Industrial never-dried Eucalyptus globulus bleachedkraft pulp was split in two halves and one of them was dried at ambientcontrolled conditions. We compared enzyme effects on both pulps (wet pulp anddried pulp) before and after PFI mill refining. Enzyme applications increaseddrainability (Schopper–Riegler method) and water retention value (WRV) ofnever-dried bleached pulp, although this did not imply an enhancement of themechanical properties of paper. Cellulase treatment of dried pulps, bycontrast,gave rise to increased drainability and WRV and also to improved mechanicalproperties. The changes caused by drying became less significant after enzymeapplication. Handsheets from CelB-treated dried pulps showed an improvement oftensile and burst indexes while tear decreased. The effect produced by CelB canbe considered a biorefining step. In fact, by means of enzyme treatment withCelB the properties of paper manufactured from dried pulp equalled theproperties attained from wet fibres, with the exception of tear index. Changeswere also found in surface fibre morphology, such as flakes and peeling due tocellulase treatment. The surface modification of fibres with cellulases givesrise to better bonding properties and a closer structure of paper. The finalconclusion is that treatment with cellulases could compensate the hornificationeffect and lead to an important saving of refining energy. The novel enzyme,CelB, was the most effective in improving paper properties and counterbalancingthe hornification effect caused by drying.  相似文献   

11.
In this study, the importance of hemicellulose content and structure in chemical pulps on the property relationships in compression molded wood pulp biocomposites is examined. Three different softwood pulps are compared; an acid sulfite dissolving grade pulp with high cellulose purity, an acid sulfite paper grade pulp and a paper grade kraft pulp, the latter two both containing higher amounts of hemicelluloses. Biocomposites based the acid sulfite pulps exhibit twice as high Young’s modulus as the composite based on paper grade kraft pulp, 11–12 and 6 GPa, respectively, and the explanation is most likely the difference in beating response of the pulps. Also the water retention value (WRV) is similarly low for the two molded sulfite pulps (0.5 g/g) as compared to the molded kraft pulp (0.9 g/g). The carbohydrate composition is determined by neutral sugar analysis and average molar masses by SEC. The cellulose supramolecular structure (cellulose fibril aggregation) is studied by solid state CP/MAS 13C-NMR and two forms of hemicellulose are assigned. During compression molding, cellulose fibril aggregation occurs to higher extent in the acid sulfite pulps as compared to the kraft pulp. In conclusion, the most important observation from this study is that the difference in hemicellulose content and structure seems to affect the aggregation behaviour and WRV of the investigated biocomposites.  相似文献   

12.
The porous structure of the interior of papermaking fibres is a well-known important property of the fibres. Changes of this structure will influence tensile and burst strength of paper formed from the fibres and a change in pore size of the pores within the fibre wall is also important for the ability of molecules to diffuse in and out of the fibre wall. Relevant examples of this latter effect are the removal of lignin during cooking and the addition of performance chemicals during papermaking. In this paper, pore sizes and the pore size distribution of unbleached softwood fibres have been studied. A well-characterised fibre material consisting of laboratory cooked spruce and pine pulp of various lignin contents was used. Pore size and pore size distribution were measured by studies of the relaxation behaviour of 2H in fibres saturated with 2H2O. Beside this the total and surface charge of the fibres were also measured together with strength properties of papers from unbeaten fibres. For both pulps, there is a maximum in pore radius at a yield around 46%. Calculations of fibre wall volume from water retention values and yield levels show that there is a discontinuity in pore radius as a function of the fibre wall volume around a yield of 51%. It is suggested that this discontinuity is caused by the breakdown of the hemicellulose/lignin matrix within the fibre wall at this yield level. The strength of the papers formed from the fibres shows a correlation with the surface charge of the fibres. Based on the change in surface charge with yield and the change in total charge with yield, this correlation is suggested to be due to an opening up of the external part of the fibre wall. This stresses the importance of the chemical composition and physical structure of the outer layer of the fibre wall.  相似文献   

13.
Total halogen-free bleaching of kraft pulps was conducted by an oxidative photochemical process at room temperature using alkaline hydrogen peroxide. Selection of an appropriate wavelength of light was crucial for effective bleaching and avoiding degradation of cellulose. The wavelength of the light has to be selected so that the light is absorbed only by the colored compounds in the pulps and not by the bleaching reagents or the pulp itself. When a long-wavelength black-light fluorescent lamp was used in combination with aqueous hydrogen peroxide solution at pH 11, the bleaching efficiency for hardwood and softwood kraft pulps reached the same level as that obtained by conventional two-stage elemental chlorine-free processes.  相似文献   

14.
Sorption of spruce acetylated galactoglucomannans (GGM) onto different pulps, among which unbleached and peroxide-bleached mechanical pulps, and unbleached and bleached kraft (BK) pulps, was studied as a means of understanding the retention of acetylated GGMs in mechanical pulping and papermaking. The fibre surface coverage of lignin and carbohydrates was estimated by X-ray photoelectron spectroscopy (XPS) or electron spectroscopy for chemical analysis (ESCA). GGM sorption was clearly favoured on kraft pulps. Hardly any differences in sorption were, however, observed between unbleached and BK pulps, even if the surface coverage of lignin was lower on the bleached pulp. Neither thermomechanical pulp (TMP) nor chemithermomechanical pulp (CTMP) manufactured from spruce sorbed any acetylated GGMs. Peroxide bleaching of the pulp did not increase sorption. Only CTMP produced from aspen sorbed some GGMs. The anionic charge of neither chemical nor mechanical pulps influenced GGM sorption.  相似文献   

15.
The effect of pH on the formation of precipitates (lignin, extractives and metals) on kraft pulp surfaces was examined by electron spectroscopy for chemical analysis, time-of-flight secondary ion mass spectrometry and atomic force microscopy (AFM). A softwood kraft pulp slurry from an oxygen delignification stage was diluted to 3% consistency with water or an acidic Z filtrate. After heating to 70 °C the pH was lowered from 11 to 2–5, using sulphuric acid. Lignin and extractives precipitated at pH values below 6, and their amounts increased with decreasing pH. Most of the precipitated lignin was found on the pulp surface after sheet forming, whereas the main part of the precipitated extractives could be easily washed away with water. The layer of precipitated lignin was apparently thicker than the layer of extractives. AFM showed the precipitated material as a granular phase. Neither surface morphology nor surface coverage depended on the addition of Z filtrate. The amount of metals ID the pulp and on the pulp surface decreased when pH was lowered to 2. More metals, such as Ca and Mg, were detected ID the pulps as well as on the sheet surfaces when the pulp was diluted with Z filtrate. Strength and bonding properties of the pulp sheets were slightly impaired by the precipitated material. Acidification appears to be the main reason for the precipitation of both lignin and extractives on the pulp surfaces. This should be taken into account when filtrates are recycled ID the bleaching or washing of pulps.  相似文献   

16.
The primary goal with this work is to create electrically conductive cellulose fibres, this has been done to explore possible new applications for fibre based material. This research uses various methods to create polyelectrolyte multilayers (PEMs) on bleached softwood fibres and on SiO2 model surfaces, by sequentially treating these materials with poly(3,4-ethylenedioxythiophene):poly(styrene sulphonate) (PEDOT:PSS) and poly(allyl amine) (PAH). Paper sheets were then produced from the PEM-modified pulp and evaluated in terms of tensile strength, adsorbed amount of polymer, and electrical conductivity. To evaluate the influence of fibre charge on the measured paper properties, pulps of two different initial fibre charge densities were prepared via carboxymethylation. Because of the bluish colour of PEDOT:PSS, the build-up of PEM could be easily followed, since the fibres grew increasingly darker blue throughout the modification sequence. The conductivity of the fibre network increased by 2−3 orders of magnitude when the pulp of a higher fibre charge density was used. This suggests that it is more important to create a fibrous network with a high fibre-fibre joint strength and a large total joined area in the sheet rather than to maximize the adsorbed amount of PEDOT:PSS. A difference in conductivity could also be noted depending on the polyelectrolyte adsorbed in the outer layer, PAH lowered the conductivity compared to PEDOT:PSS. Evaluating the mechanical properties revealed that the use of PEDOT:PSS reduces the tensile strength of the paper. When five double layers had been adsorbed onto the carboxymethylated sample in which PEDOT:PSS formed the outer layer, calculations indicated a 25% decrease in tensile strength compared to that of reference material without PEMs. ESEM studies indicate that PEM treatment produces a significantly changed and somewhat smoother fibre surface.  相似文献   

17.
Four different spruce sulphite pulp samples were used for the preparation of carboxymethylcellulose (CMC). The characteristics of the unreacted fibre and particle residuals obtained in the CMC-preparation were used to establish a correlation between the hemicellulose in the pulp and the intrinsic viscosity, i.e.,␣cellulose chain length and the occurence of unreacted residuals. It was shown that the residual particles in the CMC consisted of fibres, fibre fractions and gel particles of different degrees of substitution. The results suggested that pulps with long cellulose chains, i.e., pulps with high intrinsic viscosities, resulted in particles that were more substituted and more swollen. These pulps also resulted in more substituted hemicelluloses in the CMC and more substituted residuals. It was also suggested that galactoglucomannan in the cellulose pulps is favourable for the swelling which results in more substituted hemicelluloses in the CMC and more swollen residuals. The amount of residuals was influenced mainly by the characteristics of the cellulose in the pulp. It is therefore believed that a combination of high viscosity and a suitable combination of hemicelluloses is the most favourable way of eliminating the occurrence of undissolved residuals in CMC.  相似文献   

18.
The amount of disordered material in two types of hardwood kraft pulps was estimated by determining the weight loss at the point where the levelling-off degree of polymerisation (LODP) was reached. The pulps used were commercial pulps viz (1)one conventional birch kraft and (2)one mixed hardwood (MHW) kraft pulp that had been prehydrolysed prior to cooking. The results indicated that the hemicellulose xylan is closely associated with the cellulose in commercial birch pulps. It is therefore only possible to use LODP as a measure of the crystallite length of hardwood cellulose in highly purified pulps, such as prehydrolysed kraft pulp. A model explaining the LODP-results is proposed.  相似文献   

19.
Bleached acid sulphite and kraft Eucalyptus globulus pulps were subjected to treatment at high hydrostatic pressure (400 MPa during 10 min). The associated structural changes of cellulose were evaluated by X-ray scattering, solid-state NMR and infrared spectroscopy. The high pressure treatment promoted the growth of crystalline domains predominantly via lateral aggregation (cocrystallization) and, to some extent, due to the accretion of cellulose from noncrystalline domains (recrystallization). The treated pulps exhibited increment of the amount of strongly bound water and improved accessibility to amorphous domains. The high pressure treatment of dried sulphite pulp led to restoration, at least partially, of its swelling capacity thus diminishing the hornification features. Pressure treated dried sulphite pulp showed improved fibre bonding capacity at simultaneously increased bulk of the produced handsheets. The results obtained clearly showed the potential of high pressure treatments for the modification of cellulosic fibres in different applications.  相似文献   

20.
Solid-state 13C NMR spectroscopy was used to determine the degree of cellulose crystallinity (CrI) in kraft, flow-through kraft and polysulphide–anthraquinone (PS–AQ) pulps of pine and birch containing various amounts of hemicelluloses. The applicability of acid hydrolysis and the purely spectroscopic proton spin-relaxation based spectral edition (PSRE) method to remove the interfering hemicellulose signals prior to the determination of CrI were also compared. For softwood pulps, the spectroscopic removal of hemicelluloses by PSRE was found to be more efficient than the removal of hemicelluloses by acid hydrolysis. In addition to that, the PSRE method also provides information on the associations between cellulose and hemicelluloses. On the basis of the incomplete removal of xylan from the cellulose subspectra by PSRE, the deposition of xylan on cellulose fibrils and therefore an ordered ultrastructure of xylan in birch pulps was suggested. The ordered structure of xylan in birch pulps was also supported by the observed change of xylan conformation after regeneration. Similarly, glucomannan in pine pulps may have an ordered structure. According to the 13C CPMAS measurements conducted after acid hydrolysis, the degree of cellulose crystallinity was found to be slightly lower in birch pulps than in the pine pulps. Any significant differences in cellulose crystallinity were not found between the pulps obtained by the various pulping methods. Only in pine PS–AQ pulp, the degree of cellulose crystallinity may be slightly lower than in the kraft pulps containing less hemicelluloses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号