首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is suggested that, for the operation of platinum catalysts based on tin dioxide in air hydrogen fuel cells, hydrogen spillover (migration) leading to a change in the electron and proton contributions of the catalyst conductivity is of crucial importance. The hydrogen adsorption, dissociation, and migration in the platinum-tin dioxide-hydrogen system surface have been modeled by the density functional theory method within the generalized gradient approximation (GGA) under periodic conditions using a projector-augmented plane-wave (PAW) basis set with a pseudopotential. It has been demonstrated that the adsorption energy of a hydrogen molecule onto a platinum cluster increases from 1.6 to 2.4 eV as the distance to the SnO2 substrate decreases. The calculated Pt-H bond length for adsorbed structures is 1.58–1.78 Å. The computer modeling has demonstrated that: (1) the hydrogen adsorption energy on clusters is higher than on the perfect platinum surface; (2) dissociative chemisorption onto Pt n clusters can occur without a barrier and depends on the adsorption site and the cluster structure; (3) the adsorption energy of hydrogen onto the SnO2 surface is higher than the adsorption energy onto the platinum cluster surface: (4) multiple H2 dissociation on the tin dioxide surface occurs with a barrier; (5) the dissociation adsorption of hydrogen molecules onto the platinum cluster surface followed by atom migration (spillover) is energetically favorable.  相似文献   

2.
The reaction properties of Rh/TiO2 sodium tetrahydroborate hydrolysis catalysts reduced directly in the reaction medium depend on the temperature at which they were calcined. Raising the calcination temperature to 300°C enhances the activity of the Rh/TiO2 catalysts. Using diffuse reflectance electronic spectroscopy, photoacoustic IR spectroscopy, and chemical and thermal analyses, it is demonstrated that, as RhCl3 is supported on TiO2 (anatase), the active-component precursor interacts strongly with the support surface. The degree of this interaction increases as the calcination temperature is raised. TEM, EXAFS, and XANES data have demonstrated that the composition and structure of the rhodium complexes that form on the titanium dioxide surface during different heat treatments later determine the state of the supported rhodium particles forming in the sodium tetrahydroborate reaction medium.  相似文献   

3.
The state of surface Pt atoms in the Pt/SO4/ZrO2/Al2O3 catalyst and the effect of the state of platinum on its adsorption and catalytic properties in the reaction of n-hexane isomerization were studied. The Pt-X/Al2O3 alumina-platinum catalysts modified with various halogens (X = Br, Cl, and F) and their mechanical mixtures with the SO4/ZrO2/Al2O3 superacid catalyst were used in this study. With the use of IR spectroscopy (COads), oxygen chemisorption, and oxygen-hydrogen titration, it was found that ionic platinum species were present on the reduced form of the catalysts. These species can adsorb to three hydrogen atoms per each surface platinum atom. The specific properties of ionic platinum manifested themselves in the formation of a hydride form of adsorbed hydrogen. It is believed that the catalytic activity and operational stability of the superacid system based on sulfated zirconium dioxide were due to the participation of ionic and metallic platinum in the activation of hydrogen for the reaction of n-hexane isomerization.  相似文献   

4.
胡博  王健捷  肖霞  于湛  赵震 《化学通报》2024,87(6):685-392
随着全球能源消耗的不断增长和环境污染问题的日益严重,寻找清洁、高效的CO2利用路径成为研究热点。甲醇由于用途广泛,既是重要的化工原料,也是一种新型清洁能源。CO2催化加氢制甲醇过程不仅实现CO2减排,还是碳资源循环利用的有效途径之一,对解决能源紧缺和环境问题具有重要意义。高活性、高选择性和高稳定性的CO2加氢制甲醇催化剂的开发一直是该过程的核心技术。本文综述了二氧化碳加氢制甲醇的研究进展,主要介绍了反应机理和催化剂,并以Cu基催化剂重点总结了活性位、载体和助剂对催化性能的影响,最后对二氧化碳加氢制甲醇的应用前景进行了展望。  相似文献   

5.
The selective oxidation of CO in the presence of hydrogen on CuO/CeO2 systems containing Fe and Ni oxides as promoters was studied. The catalysts containing 1–5 wt % CuO and 1–2.5 wt % Fe2O3 supported on CeO2 and the CuO/CeO2 systems containing 1–2.5 wt % NiO were synthesized, and their catalytic activity as a function of temperature was determined. It was found that the additives of Fe and Ni oxides increased the activity of the CuO/CeO2 catalysts with a low concentration of CuO. In this case, the conversion of CO at 150°C approached 100%. At the same time, these additives had no effect on the activity of the CuO/CeO2 systems at a CuO concentration of 5 wt % or higher, which exhibited an initially high activity in the above temperature region. The forms of CO adsorption and the amounts of active sites for CO adsorption and oxidation were studied using temperature-programmed desorption. It was found that the introduction of Fe and Ni additives in a certain preparation procedure facilitated the formation of an additional amount of active centers associated with CuO. Data on the temperature-programmed reduction of samples (the amount of absorbed hydrogen and the maximum temperature of hydrogen absorption) suggested the interaction of all catalyst components, and the magnitude of this interaction depended on the sample preparation procedure. With the use of Mössbauer spectroscopy, it was found that the procedure of iron oxide introduction into the CuO/CeO2 system was responsible for the electron-ion interactions of catalyst components and the reaction mixture.  相似文献   

6.
Nickel nanoparticles supported on silica were prepared by hydrazine reduction in aqueous medium. The obtained solids were characterized by X-ray diffraction (XRD), Transmission Electronic Microscopy (TEM), Electron Diffraction (ED), hydrogen chemisorption, and Temperature Programmed Desorption of hydrogen (H2-TPD). The catalytic properties were evaluated for benzene hydrogenation in the temperature range 75–230 °C. XRD patterns reveal presence of the metallic nickel particles with fcc structure. Metal dispersion and hydrogen storage increase with decreasing metal particle size. The H2-TPD profiles exhibit two domains, one due to desorption of hydrogen from Ni metal and another due to spillover from metal to the support. The catalytic activity strongly depends on the metal loading. It increases with decreasing metal loading. This is attributed to metal surface area, which also increases with decreasing metal loading. Kinetic studies of benzene hydrogenation on the Ni catalysts showed that the benzene partial order is around −2. This significant negative value is ascribed to a strong adsorption of benzene on the catalyst surface.  相似文献   

7.
The samples of Pd-Ag/Al2O3 catalysts for the selective hydrogenation of acetylene impurities in an ethane-ethylene mixture were studied using the IR spectroscopy of adsorbed CO, X-ray diffraction analysis, and thermogravimetry. In the course of reaction and regeneration, the total concentration of the supported metals (Pd and Ag) changed only slightly. The degree of accessibility of silver atoms to CO adsorption and the amount of these atoms in the nearest environment of palladium atoms decreased to result in an increase in the selectivity of acetylene hydrogenation to ethane. The decrease in the accessibility of silver was due to a change in the phase composition of the alumina support as a result of its rehydration. It was hypothesized that the resulting aluminum hydroxide with the boehmite morphology is a source of the strongest Lewis acid sites, which catalyze oligomerization processes on the catalyst surface.  相似文献   

8.
The activity and stability of aluminum-palladium catalysts in the hydrogenation of aromatic hydrocarbons mixed with thiophene were studied. The catalysts were obtained by impregnation of γ-A2O3 with aqueous solutions of salts of palladium complexes. Preliminary sulfiding followed by oxidative activation of Pd/Al2O3 catalysts were found to favor the formation of such palladium state on the surface at which the hydrogenation of aromatic hydrocarbons in the presence of sulfur-containing impurities proceeds without a noticeable change in the activity with time. IR spectroscopy showed that the palladium metal surface fragments forming CO complexes with a characteristic absorption band at 1998 cm–1 are resistant to poisoning with sulfur-containing compounds in the hydrogenation of aromatic hydrocarbons.  相似文献   

9.
Cerium dioxide as a component of CuO-ZnO-CeO2/Al2O3/cordierite catalysts stabilizes their action in the decomposition of methanol by preventing carbon deposition on the surface and facilitating hydrogen formation with selectivity and yield in the range 85–96%. The optimal indices for this reaction are obtained for a CeO2-CuO/Al2O3/cordierite sample prepared using an ammonium precursor for cerium, (NH4)2Ce(NO3)6. This catalyst displays enhanced reductive capacity relative to the analogous CeO2-CuO composition prepared using Ce(NO3)3·6H2O.  相似文献   

10.
Adsorption microcalorimetry has been employed to study the interaction of ethylene with the reduced and oxidized Pt-Ag/SiO2catalysts with different Ag contents to elucidate the modified effect of Ag towards the hydrocarbon processing on platinum catalysts. In addition, microcalorimetric adsorption of H2, O2, CO and FTIR of CO adsorption were conducted to investigate the influence of Ag on the surface structure of Pt catalyst. It is found from the microcalorimetric results of H2and O2adsorption that the addition of Ag to Pt/SiO2leads to the enrichment of Ag on the catalyst surface which decreases the size of Pt surface ensembles of Pt-Ag/SiO2catalysts. The microcalorimetry and FTIR of CO adsorption indicates that there still exist sites for linear and bridged CO adsorption on the surface of platinum catalysts simultaneously although Ag was incorporated into Pt/SiO2. The ethylene microcalorimetric results show that the decrease of ensemble size of Pt surface sites suppresses the formation of dissociative species (ethylidyne) upon the chemisorption of C2H4on Pt-Ag/SiO2. The differential heat vs. uptake plots for C2H4adsorption on the oxygen-preadsorbed Pt/SiO2and Pt-Ag/SiO2catalysts suggest that the incorporation of Ag to Pt/SiO2could decrease the ability for the oxidation of C2H4.  相似文献   

11.
A study was carried out on the properties of Ni/Al2O3 and Cu-ZnO/Al2O3 composites supported on ceramic honeycomb monoliths made from synthetic cordierite in the carbon dioxide conversion of methane and the partial oxidation of methanol. The structured nickel-alumina catalysts are significantly more efficient than the conventional granulated catalysts. The improved working stability of these catalysts was achieved by adjusting the acid-base properties of the surface by introducing sodium and potassium oxides, which leads to inhibition of surface carbonization. The hydrogen yield was close to 90% in the partial oxidation of methanol with a stoichiometric reagent ratio in the presence of the Cu-ZnO/Al2O3/cordierite catalyst. A synergistic effect was found, reducing the selectivity of CO formation in the presence of the Cu-ZnO catalyst relative to samples derived from the individual components Cu and ZnO. __________ Translated from Teoreticheskaya i éksperimental’naya Khimiya, Vol. 43, No. 5, pp. 299–306, September–October, 2007.  相似文献   

12.
The methods of synthesis of composite membrane catalysts based on Mо2C and Al2O3 support by a sol–gel method were developed. The samples of membrane catalysts with different architectures were developed. The difference in the catalytic activity of membrane catalysts in carbon dioxide conversion of methane depending on the porous structure and morphology of the catalytic layer was studied.  相似文献   

13.
The comparative study of the role of binary oxide support on catalyst physico-chemical properties and performance in methanol synthesis were undertaken and the spinel like type structures (ZnAl2O4, FeAlO3, CrAl3O6) were prepared and used as the supports for 5% metal (Cu, Ag, Au, Ru) dispersed catalysts. The monometallic 5% Cu/support and bimetallic 1% Au (or 1% Ru)-5% Cu/support (Al2O3, ZnAl2O4, FeAlO3, CrAl3O6) catalysts were investigated by BET, XRD and TPR methods. Activity tests in methanol synthesis of CO and CO2 mixture hydrogenation were carried out. The order of Cu/support catalysts activity in methanol synthesis: CrAl3O{ia6} > FeAlO3 > ZnAl2O4 is conditioned by their reducibility in hydrogen at low temperature. Gold appeared more efficient than ruthenium in promotion of Cu/support catalysts. Published in Russian in Kinetika i Kataliz, 2009, Vol. 50, No. 2, pp. 242–248. The article is published in the original.  相似文献   

14.
A two-dimensional layered niobium oxide and its exfoliated nanosheet were examined as potential solid acid supports for direct synthesis of hydrogen peroxide from hydrogen and oxygen under intrinsically safe and noncorrosive reaction conditions. The catalytic performance strongly depended on the acid strength of the support material. The Pd-supported protonated niobium oxide nanosheet catalyst (Pd/HNb3O8-NS) with remarkably enhanced acidity was superior to layered Pd/KNb3O8 or Pd/HNb3O8 to promote the reaction. Hydrogen peroxide decomposition testing revealed that, although HNb3O8 was comparable to its exfoliated counterpart, HNb3O8-NS, in suppressing hydrogen peroxide decomposition without hydrogen, HNb3O8 was virtually ineffective in preventing hydrogen peroxide hydrogenation in the presence of hydrogen. However, compared with HNb3O8, HNb3O8-NS was found to be still effective at suppressing hydrogen peroxide hydrogenation. The different efficiency observed between HNb3O8 and HNb3O8-NS in the prevention of hydrogen peroxide hydrogenation implies that use of a highly acidic support is advantageous to effectively suppress faster and therefore more unfavorable hydrogen peroxide hydrogenation compared with decomposition. This result clearly demonstrates that the highly acidic HNb3O8 nanosheet can serve as an efficient solid acid support for direct synthesis of hydrogen peroxide from hydrogen and oxygen.  相似文献   

15.
Effect of the phase composition of aluminum oxide [γ- and (δ + θ) phase] and introduction of zinc additives on the catalytic properties of 0.5% Pd/Al2O3 systems in the reaction of liquid-phase hydrogenation of acetylene into ethylene under an elevated pressure in a flow-through mode was studied. An increase in the activity of the Pd catalyst upon modification with zinc is only observed in the case of a system supported by the mixed phase of (δ + θ) aluminum oxide. XAFS spectroscopy was used to find that the increase in the activity and selectivity with respect to ethylene (in the presence of carbon monoxide) on the (0.5% Pd–0.62% Zn)/(δ + θ)-Al2O3 catalyst is correlated with the formation of the PdZn intermetallic compound.  相似文献   

16.
A series of zeolite X/activated carbon composites with different ratio of zeolite X and activated carbon were prepared, which were adjusted by adding solid pitch powder and silicon dioxide as additional carbonaceous and silica source, respectively. The corresponding modified samples were obtained by treatment with the ammonium chloride solution. CH4 and N2 adsorption isotherms on all composites were determined within the pressure of 0–100 kPa at 298 K, and fitted with Henry model and Freundlich model. The results showed the adsorption separation abilities for CH4 and N2 were strongly influenced by activated carbon content, micropore structure and surface properties. The increase of activated carbon content increased the BET surface area, micropore surface area and micropore volume, leading to an enhanced CH4 adsorption capacity and CH4/N2 adsorption selectivity. Compared with the unmodified composites, the modified composites showed higher CH4/N2 adsorption selectivity, and CH4 adsorption capacity decreased slightly, which can be attributed to the reduction of the micropore structure parameters, the surface basic amount and basic strength. Furthermore, the modified composite HAX-3 presented the highest CH4/N2 selectivity of 3.4, and high CH4 adsorption capacities, which is favorable for application in pressure swing adsorption processes.  相似文献   

17.
Global warming, fossil fuel depletion and fuel price increases have motivated scientists to search for methods for the storage and reduction of the amount of greenhouse gases, especially CO2. The hydrogenation process has been introduced as an emerging method of CO2 capture and convertion into value-added products. In this study, new types of catalysts are introduced for CO2 hydrogenation and are compared based on catalytic activity and product selectivity. The physical properties of the samples are specified using BET. Iron catalysts supported on γ-Al2O3 with different metal promoters (X = Ni, K, Mn, Cu) are prepared through the impregnation method. Moreover, Fe–Ni catalysts supported on HZSM5-Al2O3 and Ce–Al2O3 are synthesized. Samples are reduced by pure H2 and involved in hydrogenation reaction in a fixed bed reactor (H2/CO2 = 3, total pressure = 10 MPa, temperature = 523 K, GHSV = 2000, 1250 nml/min). All catalysts provide high conversion in hydrogenation reactions and the results illustrate that the selectivity of light hydrocarbons is higher than that of methane and CO. It is found that Ni has a promoting effect on the conversion fluctuations throughout the reaction with 66.13% conversion. Using combined supported catalysts leads to enhancing catalytic performance. When Fe–Ni/γ–Al2O3—HZSM5 is utilized, CO2 conversion is 81.66% and the stability of the Fe–Ni catalyst supported on Al2O3 and Ce–Al2O3 furthey improves.  相似文献   

18.
Catalytic performance of gallia-supported iridium catalysts in the reaction of selective hydrogenation of crotonaldehyde in the gas phase was studied and compared to that of platinum and ruthenium catalysts. The best catalytic properties in terms of the selectivity to crotyl alcohol are shown by 5 wt % Pt/α-Ga2O3 and 5 wt % Ir/α-Ga2O3 catalysts prepared from nonchlorine precursors: Pt(acac)2 and Ir(acac)3, but for the 5 wt % Pt/α-Ga2O3 a very high selectivity of 75% at the high conversion (ca. 60%) is observed. A high selectivity of galia-supported iridium and platinum catalysts was explained by the surface reducibility of gallium oxide leading to covering (decoration) of platinum and iridium by gallium suboxides and the promoting effect of gallium.  相似文献   

19.
Со-Мо/Al2O3 and Ni-W/Al2O3 catalysts were tested in hydrotreating of light cycle oil from catalytic cracking, of the straight-run gasoil, and of their mixture under typical hydrotreating conditions used in industry. The catalysts prepared using PMo12 and PW12 heteropoly acids exhibit high catalytic activity. The Со-Мо/Al2O3 catalyst is more active in hydrodesulfurization and hydrogenation of olefin and diene hydrocarbons, whereas the Ni-W/Al2O3 catalysts are more active in hydrogenation of mono- and polycyclic aromatic hydrocarbons. Comparison of the quality characteristics of the hydrogenizates obtained with the requirements of the technical regulations shows that the required levels of the sulfur content and cetane number of the hydrogenizates at practically accessible process parameters can be reached for mixtures of the straight-run gasoil and light cycle oil from catalytic cracking with high content of the latter component only when the process with the Со-Мо/Al2O3 system and Ni-W/Al2O3 catalysts is performed in two steps.  相似文献   

20.
Density functional theory was applied to investigate the interaction of Co6 nanoparticle with various oxide supports including γ-Al2O3, silicalite, and zeolite HZSM-5. The introduction of cobalt into silicalite leads to insignificant stabilization of the metal cluster and induction of a small positive charge. The interaction of the Co6 particle with the acid zeolite or alumina is accompanied by transfer of either a proton from the Br?nsted acid site or hydrogen atoms from terminal OH groups to the surface of the metal cluster with the formation of a hydride-like complex cation. Geometric parameters and energy characteristics of adsorption complexes of carbon monoxide molecule with Co6 particles on different supports were calculated. For isolated particle on silicalite, “linear” adsorption is predicted. According to calculations, one can expect “angular” adsorption in the case of the acid zeolite and “two-point” adsorption (precursor of active surface carbon) in the system Co6/γ-Al2O3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号