首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Non-heme manganese and iron complexes with terminal hydroxo or oxo ligands are proposed to mediate the transfer of hydrogen atoms in metalloproteins. To investigate this process in synthetic systems, the monomeric complexes [M(III/II)H(3)1(OH)](-/2-) and [M(III)H(3)1(O)](2-) have been prepared, where M(III/II) = Mn and Fe and [H(3)1](3-) is the tripodal ligand, tris[(N'-tert-butylureaylato)-N-ethyl)]aminato. These complexes have similar primary and secondary coordination spheres, which are enforced by [H(3)1](3-). The homolytic bond dissociation energies (BDEs(O-H)) for the M(III/II)-OH complexes were determined, using experimentally obtained values for the pK(a)(M-OH) and E(1/2) measured in DMSO. This thermodynamic analysis gave BDEs(O-H) of 77(4) kcal/mol for [Mn(II)H(3)1(O-H)](2-) and 66(4) kcal/mol for [Fe(II)H(3)1(O-H)](2-). For the M(III)-OH complexes, [Mn(III)H(3)1(OH)]- and [Fe(III)H(3)1(OH)]-, BDEs(O-H) of 110(4) and 115(4) kcal/mol were obtained. These BDEs(O-H) were verified with reactivity studies with substrates having known X-H bond energies (X = C, N, O). For instance, [Fe(II)H(3)1(OH)](2-) reacts with a TEMPO radical to afford [Fe(III)H(3)1(O)](2-) and TEMPO-H in isolated yields of 60 and 75%, respectively. Consistent with the BDE(O-H) values for [Mn(II)H(3)1(OH)](2-), TEMPO does not react with this complex, yet TEMPO-H (BDE(O-H) = 70 kcal/mol) reacts with [Mn(III)H(3)1(O)](2-), forming TEMPO and [Mn(II)H(3)1(OH)](2-). [Mn(III)H(3)1(O)](2-) and [Fe(III)H(3)1(O)](2-) react with other organic substrates containing C-H bonds less than 80 kcal/mol, including 9,10-dihydroanthracene and 1,4-cyclohexadiene to produce [M(II)H(3)1(OH)](2-) and the appropriate dehydrogenated product in yields of greater than 80%. Treating [Mn(III)H(3)1(O)](2-) and [Fe(III)H(3)1(O)](2-) with phenolic compounds does not yield the product expected from hydrogen atom transfer but rather the protonated complexes, [Mn(III)H(3)1(OH)]- and [Fe(III)H(3)1(OH)]-, which is ascribed to the highly basic nature of the terminal oxo group.  相似文献   

2.
The synthesis, structural, and spectroscopic characterization of four new coordinatively unsaturated mononuclear thiolate-ligated manganese(II) complexes ([Mn(II)(S(Me2)N(4)(6-Me-DPEN))](BF(4)) (1), [Mn(II)(S(Me2)N(4)(6-Me-DPPN))](BPh(4))·MeCN (3), [Mn(II)(S(Me2)N(4)(2-QuinoPN))](PF(6))·MeCN·Et(2)O (4), and [Mn(II)(S(Me2)N(4)(6-H-DPEN)(MeOH)](BPh(4)) (5)) is described, along with their magnetic, redox, and reactivity properties. These complexes are structurally related to recently reported [Mn(II)(S(Me2)N(4)(2-QuinoEN))](PF(6)) (2) (Coggins, M. K.; Kovacs, J. A. J. Am. Chem. Soc.2011, 133, 12470). Dioxygen addition to complexes 1-5 is shown to result in the formation of five new rare examples of Mn(III) dimers containing a single, unsupported oxo bridge: [Mn(III)(S(Me2)N(4)(6-Me-DPEN)](2)-(μ-O)(BF(4))(2)·2MeOH (6), [Mn(III)(S(Me2)N(4)(QuinoEN)](2)-(μ-O)(PF(6))(2)·Et(2)O (7), [Mn(III)(S(Me2)N(4)(6-Me-DPPN)](2)-(μ-O)(BPh(4))(2) (8), [Mn(III)(S(Me2)N(4)(QuinoPN)](2)-(μ-O)(BPh(4))(2) (9), and [Mn(III)(S(Me2)N(4)(6-H-DPEN)](2)-(μ-O)(PF(6))(2)·2MeCN (10). Labeling studies show that the oxo atom is derived from (18)O(2). Ligand modifications, involving either the insertion of a methylene into the backbone or the placement of an ortho substituent on the N-heterocyclic amine, are shown to noticeably modulate the magnetic and reactivity properties. Fits to solid-state magnetic susceptibility data show that the Mn(III) ions of μ-oxo dimers 6-10 are moderately antiferromagnetically coupled, with coupling constants (2J) that fall within the expected range. Metastable intermediates, which ultimately convert to μ-oxo bridged 6 and 7, are observed in low-temperature reactions between 1 and 2 and dioxygen. Complexes 3-5, on the other hand, do not form observable intermediates, thus illustrating the effect that relatively minor ligand modifications have upon the stability of metastable dioxygen-derived species.  相似文献   

3.
A bis-hydroxo-bridged diiron(III) complex and a bis-mu-oxo-bis-mu-hydroxo-bridged tetrairon(III) complex are isolated from the reaction of 2,6-bis((N,N'-bis-(2-picolyl)amino)methyl)-4-tert-butylphenol (Hbpbp) with iron perchlorate in acidic and neutral solutions respectively. The X-ray structure of the dinuclear complex [{(Hbpbp)Fe([mu-OH)}(2)](ClO(4))(4).2C(3)H(6)O (1.2C3H6O) shows that only one of the metal-binding cavities of each ligand is occupied by an iron(III) atom and two [Fe(Hbpbp)]3+ units are linked together by two hydroxo bridging groups to form a [Fe(III)-(mu-OH)](2) rhomb structure with Fe...Fe = 3.109(1)A. The non-coordinated tertiary amine of Hbpbp is protonated. Magnetic susceptibility measurements show a well-behaved weak antiferromagnetic coupling between the two Fe(III) atoms, J= -8 cm(-1). The tetranuclear complex [(bpbp)(2)Fe(4)(mu-O)(2)(mu-OH)(2)](ClO(4))(4)(2) was isolated as two different solvates .4CH(3)OH and .6H(2)O with markedly different crystal morphologies at pH ca. 6. Complex .4CH(3)OH forms red cubic crystals and .6H(2)O forms green crystalline platelets. The Fe(4)O(6) core of shows an adamantane-like structure: The six bridging oxygen atoms are provided by the two phenolato groups of the two bpbp(-) ligands, two bridging oxo groups and two bridging hydroxo groups. The hydroxo and oxo ligands could be distinguished on the basis of Fe-O bond lengths of the two different octahedral iron sites: Fe-mu-OH, 1.953(5), 2.013(5)A and Fe-mu-O, 1.803(5), 1.802(5)A. The difference in ligand environment is too small for allowing Mossbauer spectroscopy to distinguish between the two crystallographically independent Fe sites. The best fit to the magnetic susceptibility of .4CH(3)OH was achieved by using three coupling constants J(Fe-OPh-Fe)= 2.6 cm(-1), J(Fe-OH-Fe)=-0.9 cm(-1), J(Fe-O-Fe)=-101 cm(-1) and iron(III) single ion ZFS (|D|= 0.15 cm(-1)).  相似文献   

4.
Mononuclear iron(III) species with end-on and side-on peroxide have been proposed or identified in the catalytic cycles of the antitumor drug bleomycin and a variety of enzymes, such as cytochrome P450 and Rieske dioxygenases. Only recently have biomimetic analogues of such reactive species been generated and characterized at low temperatures. We report the synthesis and characterization of a series of iron(II) complexes with pentadentate N5 ligands that react with H(2)O(2) to generate transient low-spin Fe(III)-OOH intermediates. These intermediates have low-spin iron(III) centers exhibiting hydroperoxo-to-iron(III) charge-transfer bands in the 500-600-nm region. Their resonance Raman frequencies, nu(O)(-)(O), near 800 cm(-)(1) are significantly lower than those observed for high-spin counterparts. The hydroperoxo-to-iron(III) charge-transfer transition blue-shifts and the nu(O)(-)(O) of the Fe-OOH unit decreases as the N5 ligand becomes more electron donating. Thus, increasing electron density at the low-spin Fe(III) center weakens the O-O bond, in accord with conclusions drawn from published DFT calculations. The parent [(N4Py)Fe(III)(eta(1)-OOH)](2+) (1a) ion in this series (N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine) can be converted to its conjugate base, which is demonstrated to be a high-spin iron(III) complex with a side-on peroxo ligand, [(N4Py)Fe(III)(eta(2)-O(2))](+) (1b). A detailed analysis of 1a and 1b by EPR and M?ssbauer spectroscopy provides insights into their electronic properties. The orientation of the observed (57)Fe A-tensor of 1a can be explained with the frequently employed Griffith model provided the rhombic component of the ligand field, determined by the disposition of the hydroperoxo ligand, is 45 degrees rotated relative to the octahedral field. EXAFS studies of 1a and 1b reveal the first metrical details of the iron-peroxo units in this family of complexes: [(N4Py)Fe(III)(eta(1)-OOH)](2+) has an Fe-O bond of 1.76 A, while [(N4Py)Fe(III)(eta(2)-O(2))](+) has two Fe-O bonds of 1.93 A, values which are in very good agreement with results obtained from DFT calculations.  相似文献   

5.
The reactions of [Mn3O(O2CCCl3)6(H2O)3] with 1-phenyl-3-(2-pyridyl)propane-1,3-dione (HL(1)) and 1-(2-pyridly)-3-(p-tolyl)propane-1,3-dione (HL(2)) in CH2Cl2 afford the mixed-valence Mn(II)2Mn(III)2 tetranuclear complexes [Mn4O(O2CCCl3)6(L(1))2] (1) and [Mn4O(O2CCCl3)6L2(2)] (2), respectively. Similar reactions employing [Mn3O(O2CPh)6(H2O)(py)2] with HL(1) and HL(2) give the Mn(II)3Mn(III)3 hexanuclear complexes [Mn6O2(O2CPh)8(L(1))3] (3) and [Mn6O2(O2CPh)8L3(2)] (4), respectively. Complexes 1.2CH2Cl2, 2.2CH2Cl2.H2O, 3.1.5CH2Cl2.Et2O.H2O, and 4.2CH2Cl2 crystallize in the triclinic space group P1, monoclinic space group P2(1)/c, monoclinic space group P2 1/ n, and monoclinic space group P2(1)/n, respectively. Complexes 1 and 2 consist of a trapped-valence tetranuclear core of [Mn(II)2Mn(III)2(mu4-O)](8+), and complexes 3 and 4 represent a new structural type, possessing a [Mn(II)3Mn(III)3(mu4-O)2](11+) core. The magnetic data indicate that complexes 3 and 4 have a ground-state spin value of S = 7/2 with significant magnetoanisotropy as gauged by the D values of -0.51 cm (-1) and -0.46 cm (-1), respectively, and frequency-dependent out-of-phase signals in alternating current magnetic susceptibility studies indicate their superparamagnetic behavior. In contrast, complexes 1 and 2 are low-spin molecules with an S = 1 ground state. Single-molecule magnetism behavior confirmed for 3 the presence of sweep-rate and temperature-dependent hysteresis loops in single-crystal M versus H studies at temperatures down to 40 mK.  相似文献   

6.
The ligands (L(t-Bu(2)))(2-), (L(Me(2)))(2-), and (L(Cl(2)))(2-) have been employed for the synthesis of the dinuclear Fe(III) complexes [L(t-Bu(2))Fe(μ-O)FeL(t-Bu(2))], [L(Me(2))Fe(μ-O)FeL(Me(2))], and [L(Cl(2))Fe(μ-O)FeL(Cl(2))]. The strongly electron-donating groups (tert-amines and phenolates) were chosen to increase the electron density at the coordinated ferric ions and thus to facilitate the oxidation of the complexes, with the possibility of fine-tuning the electronic structures by variation of the remote substituents. Molecular structures established in the solid (by single-crystal X-ray diffraction) and in solution (by X-ray absorption spectroscopy) show that the Fe ions are five-coordinate in a square-pyramidal coordination environment with the ligand adopting a trans-conformation. Spectroscopic and magnetic characterization establishes the highly covalent nature of the Fe(III)-O(oxo) and Fe(III)-O(Ph) bonds. The variations in the donor capabilities of the phenolates (due to changes in the remote substituents) are compensated for by a flexible electron donation of the Fe(III)-O(oxo) bonding. Spectroelectrochemical characterization demonstrates that [L(t-Bu(2))Fe(μ-O)FeL(t-Bu(2))] can be oxidized reversibly at +0.27 and +0.44 V versus Fc(+)/Fc, whereas [L(Me(2))Fe(μ-O)FeL(Me(2))] and [L(Cl(2))Fe(μ-O)FeL(Cl(2))] exhibit irreversible oxidations at +0.29 and +0.87 V versus Fc(+)/Fc, respectively. UV-vis, electron paramagnetic resonance (EPR), X-ray absorption spectroscopy (XAS), and Mo?ssbauer spectroscopy show that the successive oxidations of [L(t-Bu(2))Fe(μ-O)FeL(t-Bu(2))] are ligand-centered leading to the monophenoxyl radical complex [(?)L(t-Bu(2))Fe(III)(μ-O)Fe(III)L(t-Bu(2))](+) (with the oxidation primarily localized on one-half of the molecule) and the diphenoxyl radical complex [(?)L(t-Bu(2))Fe(III)(μ-O)Fe(III?)L(t-Bu(2))](2+). Both products are unstable in solution and decay by cleavage of an Fe(III)-O(oxo) bond. The two-electron oxidized species is more stable because of two equally strong Fe(III)-O(oxo) bonds, whereas in the singly oxidized species the Fe(III)-O(oxo) bond of the non-oxidized half is weakened. The decay of the monocation results in the formation of [L(t-Bu(2))Fe(III)](+) and [L(t-Bu(2))Fe(IV)=O], while the decay of the dication yields [(?)L(t-Bu(2))Fe(III)](2+) and [L(t-Bu(2))Fe(IV)=O]. Follow-up reactions of the oxidized fragments with the counteranion of the oxidant, [SbCl(6)](-), leads to the formation of [Fe(III)Cl(4)](-).  相似文献   

7.
Two new polynuclear oxo/hydroxo-bridged polynuclear gallium(III) aqua complexes are obtained upon treatment of Ga(3+)(aq) with pyridine: the supramolecular compound of macrocyclic cavitand cucurbit[6]uril with gallium complex containing 32 metal atoms [Ga(32)(mu(4)-O)(12)(mu(3)-O)(8)(mu(2)-O)(7)(mu(2)-OH)(39)(H(2)O)(20)](PyH subsetC(36)H(36)N(24)O(12))(3)(NO(3))(6).53H(2)O (1) and the tridecanuclear complex [Ga(13)(mu(3)-OH)(6)(mu(2)-OH)(18)(H(2)O)(24)](NO(3))(15).12H(2)O (2). It follows that two modes of nucleation exist when Ga(3+)(aq) is hydrolyzed: one around the tetrahedral GaO(4) units (complex 1) and the other around the octahedral GaO(6) units (complex 2). This is the first time that polynuclear oxo/hydroxo-bridged aqua complexes of Ga(III) have been isolated without the use of other ligands to control or block olygomerization.  相似文献   

8.
The synthesis and magnetic properties are reported of two new clusters [Mn(10)O(4)(OH)(2)(O(2)CMe)(8)(hmp)(8)](ClO(4))(4) (1) and [Mn(7)(OH)(3)(hmp)(9)Cl(3)](Cl)(ClO(4)) (2). Complex 1 was prepared by treatment of [Mn(3)O(O(2)CMe)(6)(py)(3)](ClO(4)) with 2-(hydroxymethyl)pyridine (hmpH) in CH(2)Cl(2), whereas 2 was obtained from the reaction of MnCl(2).4H(2)O, hmpH, and NBu(n)(4)MnO(4) in MeCN followed by recrystallization in the presence of NBu(n)(4)ClO(4). Complex 1.2py.10CH(2)Cl(2).2H(2)O crystallizes in the triclinic space group P1. The cation consists of 10 Mn(III) ions, 8 mu(3)-O(2)(-) ions, 2 mu(3)-OH(-) ions, 8 bridging acetates, and 8 bridging and chelating hmp(-) ligands. The hmp(-) ligands bridge through their O atoms in two ways: two with mu(3)-O atoms and six with mu(2)-O atoms. Complex 2.3CH(2)Cl(2).H(2)O crystallizes in the triclinic space group P1. The cation consists of four Mn(II) and three Mn(III) ions, arranged as a Mn(6) hexagon of alternating Mn(II) and Mn(III) ions surrounding a central Mn(II) ion. The remaining ligation is by three mu(3)-OH(-) ions, three terminal chloride ions, and nine bridging and chelating hmp(-) ligands. Six hmp(-) ligands contain mu(2)-O atoms and three contain mu(3)-O atoms. The Cl(-) anion is hydrogen-bonded to the three mu(3)-OH(-) ions. Variable-temperature direct current (dc) magnetic susceptibility data were collected for complex 1 in the 5.00-300 K range in a 5 kG applied field. The chi(M)T value gradually decreases from 17.87 cm(3) mol(-1) K at 300 K to 1.14 cm(3) mol(-1) K at 5.00 K, indicating an S = 0 ground state. The ground-state spin of complex 2 was established by magnetization measurements in the 0.5-3.0 T and 1.80-4.00 K ranges. Fitting of the data by matrix diagonalization, incorporating only axial anisotropy (DS(z)(2)), gave equally good fits with S = 10, g = 2.13, D = -0.14 cm(-1) and S = 11, g = 1.94, D = -0.11 cm(-1). Magnetization versus dc field scans down to 0.04 K reveal no hysteresis attributable to single-molecule magnetism behavior, only weak intermolecular interactions.  相似文献   

9.
The preparation and crystal structure determination of the iron(III) compound of formula [(NH(4))(2)[Fe(2)O(ox)(2)Cl(2)].2H(2)O](n) (1) (ox = oxalate dianion) are reported here. Complex 1 crystallizes in the orthorhombic system, space group Fdd2, with a = 14.956(7) A, b = 23.671(9) A, c = 9.026(4) A, and Z = 8. The structure of complex 1 consists of the chiral anionic three-dimensional network [Fe(2)O(ox)(2)Cl(2)](2-) where the iron(III) ions are connected by single oxo and bisbidentate oxalato groups. The metal-metal separations through these bridging ligands are 3.384(2) and 5.496(2) A, respectively. Ammonium cations and crystallization water molecules are located in the helical pseudohexagonal tunnels defined by iron atoms. The longest iron-iron distance in the pseudohexagonal tunnel is 15.778(2) A whereas the shortest one is 8.734(2) A. The iron atoms are hexacoordinated: a terminal chloro ligand and five oxygen atoms, that of the oxo group and four from two cis coordinated oxalate ligands, build a distorted octahedral environment around the metal atom. The Fe-O(oxo) bond distance [1.825(2) A] is significantly shorter than the Fe(III)-O(ox) [average value 2.103(4) A] and Fe(III)-Cl bond distances [2.314(2) A]. Magnetic susceptibility measurements of 1 in the temperature range 2.0-300 K reveal the occurrence of a susceptibility maximum at 195 K and a transition toward a magnetically ordered state in the lower temperature region with T(c) = 40 K. The strong antiferromagnetic coupling through the oxo bridge (J = -46.4 cm(-1), the Hamiltonian being H = -JS(A).S(B)) accounts for the susceptibility maximum whereas a weak spin canting of approximately 0.3 degrees due to the antisymmetric magnetic exchange within the chiral three-dimensional network is responsible for the magnetic ordering. The values of coercive field (H(c)) and remnant magnetization (M(r)) obtained from the hysteresis loop of 1 at 5 K are 4000 G and 0.016 micro(B).  相似文献   

10.
The new cyano complexes of formulas PPh(4)[Fe(III)(bipy)(CN)(4)] x H(2)O (1), [[Fe(III)(bipy)(CN)(4)](2)M(II)(H(2)O)(4)] x 4H(2)O with M = Mn (2) and Zn (3), and [[Fe(III)(bipy)(CN)(4)](2)Zn(II)] x 2H(2)O (4) [bipy = 2,2'-bipyridine and PPh(4) = tetraphenylphosphonium cation] have been synthesized and structurally characterized. The structure of complex 1 is made up of mononuclear [Fe(bipy)(CN)(4)](-) anions, tetraphenyphosphonium cations, and water molecules of crystallization. The iron(III) is hexacoordinated with two nitrogen atoms of a chelating bipy and four carbon atoms of four terminal cyanide groups, building a distorted octahedron around the metal atom. The structure of complexes 2 and 3 consists of neutral centrosymmetric [[Fe(III)(bipy)(CN)(4)](2)M(II)(H(2)O)(4)] heterotrinuclear units and crystallization water molecules. The [Fe(bipy)(CN)(4)](-) entity of 1 is present in 2 and 3 acting as a monodentate ligand toward M(H(2)O)(4) units [M = Mn(II) (2) and Zn(II) (3)] through one cyanide group, the other three cyanides remaining terminal. Four water molecules and two cyanide nitrogen atoms from two [Fe(bipy)(CN)(4)](-) units in trans positions build a distorted octahedron surrounding Mn(II) (2) and Zn(II) (3). The structure of the [Fe(phen)(CN)(4)](-) complex ligand in 2 and 3 is close to that of the one in 1. The intramolecular Fe-M distances are 5.126(1) and 5.018(1) A in 2 and 3, respectively. 4 exhibits a neutral one-dimensional polymeric structure containing two types of [Fe(bipy)(CN)(4)](-) units acting as bismonodentate (Fe(1)) and trismonodentate (Fe(2)) ligands versus the divalent zinc cations through two cis-cyanide (Fe(1)) and three fac-cyanide (Fe(2)) groups. The environment of the iron atoms in 4 is distorted octahedral as in 1-3, whereas the zinc atom is pentacoordinated with five cyanide nitrogen atoms, describing a very distorted square pyramid. The iron-zinc separations across the single bridging cyanides are 5.013(1) and 5.142(1) A at Fe(1) and 5.028(1), 5.076(1), and 5.176(1) A at Fe(2). The magnetic properties of 1-3 have been investigated in the temperature range 2.0-300 K. 1 is a low-spin iron(III) complex with an important orbital contribution. The magnetic properties of 3 correspond to the sum of two magnetically isolated spin triplets, the antiferromagnetic coupling between the low-spin iron(III) centers through the -CN-Zn-NC- bridging skeleton (iron-iron separation larger than 10 A) being very weak. More interestingly, 2 exhibits a significant intramolecular antiferromagnetic interaction between the central spin sextet and peripheral spin doublets, leading to a low-lying spin quartet.  相似文献   

11.
The syntheses, crystal structures, magnetochemical characterization, and theoretical calculations are reported for three new iron clusters [Fe 6O 2(NO3) 4(hmp) 8(H 2O) 2](NO3)2 (1), [Fe4(N3)6(hmp)6] (2), and [Fe8O3(OMe)(pdm)4(pdmH) 4(MeOH)2](ClO4)5 (3) (hmpH=2-(hydroxymethyl)pyridine; pdmH2=2,6-pyridinedimethanol). The reaction of hmpH with iron(III) sources such as Fe(NO3) 3.9H2O in the presence of NEt 3 gave 1, whereas 2 was obtained from a similar reaction by adding an excess of NaN3. Complex 3 was obtained in good yield from the reaction of pdmH 2 with Fe(ClO4)3.6H2O in MeOH in the presence of an organic base. The complexes all possess extremely rare or novel core topologies. The core of 1 comprises two oxide-centered [Fe3(mu3-O)](7+) triangular units linked together at two of their apexes by two sets of alkoxide arms of hmp(-) ligands. Complex 2 contains a zigzag array of four Fe (III) atoms within an [Fe4(mu-OR) 6](6+) core, with the azide groups all bound terminally. Finally, complex 3 contains a central [Fe 4(mu4-O)](10+) tetrahedron linked to two oxide-centered [Fe3(mu3-O)](7+) triangular units. Variable-temperature, solid-state dc and ac magnetization studies were carried out on complexes 1-3 in the 5.0-300 K range. Fitting of the obtained magnetization versus field (H) and temperature (T) data by matrix diagonalization and including only axial anisotropy (zero-field splitting, ZFS) established that 1 possesses an S=3 ground-state spin, with g=2.08, and D=-0.44 cm(-1). The magnetic susceptibility data for 2 up to 300 K were fit by matrix diagonalization and gave J1=-9.2 cm(-1), J2=-12.5 cm(-1), and g=2.079, where J 1 and J 2 are the outer and middle nearest-neighbor exchange interactions, respectively. Thus, the interactions between the Fe(III) centers are all antiferromagnetic, giving an S=0 ground state for 2. Similarly, complex 3 was found to have an S=0 ground state. Theoretically computed values of the exchange constants in 2 were obtained with DFT calculations and the ZILSH method and were in good agreement with the values obtained from the experimental data. Exchange constants obtained with ZILSH for 3 successfully rationalized the experimental S = 0 ground state. The combined work demonstrates the ligating flexibility of pyridyl-alcohol chelates and their usefulness in the synthesis of new polynuclear Fex clusters without requiring the copresence of carboxylate ligands.  相似文献   

12.
In this paper, we report the electrochemical study of a family of mononuclear Fe(III) complexes [Fe(BMPA)Cl(3)] 1, [Fe(MPBMPA)Cl(3)] 2, [Fe(PBMPA)Cl(2)]3 and [Fe(PABMPA)Cl(2)](ClO(4)) 4, where the ligand BMPA is bis-(2-pyridylmethyl)amine, and MPBMPA, PBMPA and PABMPA are the N-methylpropanoate, N-propanoate and N-propanamide BMPA-derivatives, respectively. It was possible to verify the influence of the different ligands on the redox properties of the complexes and from this to classify the complexes according to their Lewis acidity through the Fe(III)/Fe(II) redox process, resulting in the following decreasing order in CH(3)CN solution: 4> 2> 1> 3. The effect of the solvents CH(3)CN and DMSO on their electrochemical properties was also determined. Furthermore, we investigated the reactivity of the electrochemically-generated Fe(II) complexes toward dioxygen and of the Fe(III) complexes toward superoxide through cyclic voltammetry. All the complexes reacted with dioxygen and superoxide in DMSO solution. Redox processes attributed to oxygenated species were observed in a more cathodic potential than those of the original compounds. According to the data, the new species Fe(II)-O(2) converts itself to Fe(III)-O(2)(-), which presents a new redox wave attributed to the process Fe(III)-O(2)(-) + e(-) --> Fe(II)-O(2)(-). The same species Fe(III)-O(2)(-) is formed from the reaction of the Fe(III) form of the complexes and KO(2).  相似文献   

13.
To mimic the carboxylate-rich active site of the manganese catalases more closely we introduced carboxylate groups into dimanganese complexes in place of nitrogen ligands. The series of dimanganese(III,IV) complexes of tripodal ligands [Mn(2)(L)(2)(O)(2)](3+/+/-/3-) was extended from those of tpa (1) and H(bpg) (2) to those of H(2)(pda) (3) and H(3)(nta) (4) (tpa=tris-picolylamine, H(bpg)=bis-picolylglycylamine, H(2)(pda)=picolyldiglycylamine, H(3)(nta)=nitrilotriacetic acid). While 3 [Mn(2)(pda)(2)(O)(2)][Na(H(2)O)(3)] could be synthesized at -20 degrees C and characterized in the solid state, 4 [Mn(2)(nta)(2)(O)(2)](3-) could be obtained and studied only in solution at -60 degrees C. A new synthetic procedure for the dimanganese(III,III) complexes was devised, using stoichiometric reduction of the dimanganese(III,IV) precursor by the benzil radical with EPR monitoring. This enabled the preparation of the parent dimanganese(III,III) complex 5 [Mn(2)(tpa)(2)(O)(2)](ClO(4))(2), which was structurally characterized. The UV/visible, IR, EPR, magnetic, and electrochemical properties of complexes 1-3 and 5 were analyzed to assess the electronic changes brought about by the carboxylate replacement of pyridine ligands. The kinetics of the oxo ligand exchanges with labeled water was examined in acetonitrile solution. A dramatic effect of the number of carboxylates was evidenced. Interestingly, the influence of the second carboxylate substitution differs from that of the first one probably because this substitution occurs on an out-of-plane coordination while the former occurs in the plane of the [Mn(2)O(2)] core. Indeed, on going from 1 to 3 the exchange rate was increased by a factor of 50. Addition of triethylamine caused a rate increase for 1, but not for 3. The abilities of 1-3 to disproportionate H(2)O(2) were assessed volumetrically. The disproportionation exhibited a sensitivity corresponding to the carboxylate substitution. These observations strongly suggest that the carboxylate ligands in 2 and 3 act as internal bases.  相似文献   

14.
The symmetrically ligated complexes 1, 2, and 3 with a (mu-oxo)bis(mu-acetato)diferric core can be one-electron oxidized electrochemically or chemically with aminyl radical cations [*NR3][SbCl6] in acetonitrile yielding complexes which contain the mixed-valent [(mu-oxo)bis(mu-acetato)iron(IV)iron(III)]3+ core: [([9]aneN3)(2FeIII2)(mu-O)(mu-CH3CO2)2](ClO4)2 (1(ClO4)2), [(Me3[9]aneN3)(2FeIII2)(mu-O)(mu-CH3CO2)2](PF6)2 (2(PF6)(2)), and [(tpb)(2FeIII2)(mu-O)(mu-CH3CO2)2] (3) where ([9]aneN3) is the neutral triamine 1,4,7-triazacyclononane and (Me3[9]aneN3) is its tris-N-methylated derivative, and (tpb)(-) is the monoanion trispyrazolylborate. The asymmetrically ligated complex [(Me3[9]aneN3)FeIII(mu-O)(mu-CH3CO2)2FeIII(tpb)](PF6) (4(PF6)) and its one-electron oxidized form [4ox]2+ have also been prepared. Finally, the known heterodinuclear species [(Me3[9]aneN3)CrIII(mu-O)(mu-CH3CO2)2Fe([9]aneN3)](PF6)2 (5(PF6)(2)) can also be one-electron oxidized yielding [5ox]3+ containing an iron(IV) ion. The structure of 4(PF6).0.5CH3CN.0.25(C2H5)2O has been determined by X-ray crystallography and that of [5ox]2+ by Fe K-edge EXAFS-spectroscopy (Fe(IV)-O(oxo): 1.69(1) A; Fe(IV)-O(carboxylato) 1.93(3) A, Fe(IV)-N 2.00(2) A) contrasting the data for 5 (Fe(III)-O(oxo) 1.80 A; Fe(III)-O(carboxylato) 2.05 A, Fe-N 2.20 A). [5ox]2+ has an St = 1/2 ground state whereas all complexes containing the mixed-valent [FeIV(mu-O)(mu-CH3CO2)2FeIII]3+ core have an St = 3/2 ground state. M?ssbauer spectra of the oxidized forms of complexes clearly show the presence of low spin FeIV ions (isomer shift approximately 0.02 mm s(-1), quadrupole splitting approximately 1.4 mm s(-1) at 80 K), whereas the high spin FeIII ion exhibits delta approximately 0.46 mm s(-1) and DeltaE(Q) approximately 0.5 mm s(-1). M?ssbauer, EPR spectral and structural parameters have been calculated by density functional theoretical methods at the BP86 and B3LYP levels. The exchange coupling constant, J, for diiron complexes with the mixed-valent FeIV-FeIII core (H = -2J S1.S2; S(1) = 5/2; S2 = 1) has been calculated to be -88 cm(-1) (intramolecular antiferromagnetic coupling) and for the reduced diferric form of -75 cm(-1) in reasonable agreement with experiment (J = -120 cm(-1)).  相似文献   

15.
The treatment of Fe(ClO(4))(2)·6H(2)O or Fe(ClO(4))(3)·9H(2)O with a benzimidazolyl-rich ligand, N,N,N',N'-tetrakis[(1-methyl-2-benzimidazolyl)methyl]-1,2-ethanediamine (medtb) in alcohol/MeCN gives a mononuclear ferrous complex, [Fe(II)(medtb)](ClO(4))(2)·?CH(3)CN·?CH(3)OH (1), and four non-heme alkoxide-iron(III) complexes, [Fe(III)(OMe)(medtb)](ClO(4))(2)·H(2)O (2, alcohol = MeOH), [Fe(III)(OEt)(Hmedtb)](ClO(4))(3)·CH(3)CN (3, alcohol = EtOH), [Fe(III)(O(n)Pr)(Hmedtb)](ClO(4))(3)·(n)PrOH·2CH(3)CN (4, alcohol = n-PrOH), and [Fe(III)(O(n)Bu)(Hmedtb)](ClO(4))(3)·3CH(3)CN·H(2)O (5, alcohol = n-BuOH), respectively. The alkoxide-iron(III) complexes all show 1) a Fe(III)-OR center (R = Me, 2; Et, 3; (n)Pr, 4; (n)Bu, 5) with the Fe-O bond distances in the range of 1.781-1.816 ?, and 2) a yellow color and an intense electronic transition around 370 nm. The alkoxide-iron(III) complexes can be reduced by organic compounds with a cis,cis-1,4-diene moiety via the hydrogen atom abstraction reaction.  相似文献   

16.
Do LH  Xue G  Que L  Lippard SJ 《Inorganic chemistry》2012,51(4):2393-2402
The composition of a (μ-oxo)diiron(III) complex coordinated by tris[(3,5-dimethyl-4-methoxy)pyridyl-2-methyl]amine (R(3)TPA) ligands was investigated. Characterization using a variety of spectroscopic methods and X-ray crystallography indicated that the reaction of iron(III) perchlorate, sodium hydroxide, and R(3)TPA affords [Fe(2)(μ-O)(μ-OH)(R(3)TPA)(2)](ClO(4))(3) (2) rather than the previously reported species [Fe(2)(μ-O)(OH)(H(2)O)(R(3)TPA)(2)](ClO(4))(3) (1). Facile conversion of the (μ-oxo)(μ-hydroxo)diiron(III) core of 2 to the (μ-oxo)(hydroxo)(aqua)diiron(III) core of 1 occurs in the presence of water and at low temperature. When 2 is exposed to wet acetonitrile at room temperature, the CH(3)CN adduct is hydrolyzed to CH(3)COO(-), which forms the compound [Fe(2)(μ-O)(μ-CH(3)COO)(R(3)TPA)(2)](ClO(4))(3) (10). The identity of 10 was confirmed by comparison of its spectroscopic properties with those of an independently prepared sample. To evaluate whether or not 1 and 2 are capable of generating the diiron(IV) species [Fe(2)(μ-O)(OH)(O)(R(3)TPA)(2)](3+) (4), which has previously been generated as a synthetic model for high-valent diiron protein oxygenated intermediates, studies were performed to investigate their reactivity with hydrogen peroxide. Because 2 reacts rapidly with hydrogen peroxide in CH(3)CN but not in CH(3)CN/H(2)O, conditions that favor conversion to 1, complex 1 is not a likely precursor to 4. Compound 4 also forms in the reaction of 2 with H(2)O(2) in solvents lacking a nitrile, suggesting that hydrolysis of CH(3)CN is not involved in the H(2)O(2) activation reaction. These findings shed light on the formation of several diiron complexes of electron-rich R(3)TPA ligands and elaborate on conditions required to generate synthetic models of diiron(IV) protein intermediates with this ligand framework.  相似文献   

17.
Zhou HB  Wang J  Wang HS  Xu YL  Song XJ  Song Y  You XZ 《Inorganic chemistry》2011,50(15):6868-6877
On the basis of high-spin metal-cyanide clusters of Mn(III)(6)M(III) (M = Cr, Fe, Co), three one-dimensional (1D) chain complexes, [Mn(salen)](6)[Cr(CN)(6)](2)·6CH(3)OH·H(2)O (1), [Mn(5-CH(3))salen)](6)[Fe(CN)(6)](2)·2CH(3)CN·10H(2)O (2), and [Mn(5-CH(3))salen)](6)[Co(CN)(6)](2)·2CH(3)CN·10H(2)O (3) [salen = N,N'-ethylenebis(salicylideneiminato) dianion], have been synthesized and characterized structurally as well as magnetically. Complexes 2 and 3 are isomorphic but slightly different from complex 1. All three complexes contain a 1D chain structure which is comprised of alternating high-spin metal-cyanide clusters of [Mn(6)M](3+) and a bridging group [M(CN)(6)](3-) in the trans mode. Furthermore, the three complexes all exhibit extended 3D supramolecular networks originating from short intermolecular contacts. Magnetic investigation indicates that the coupling mechanisms are intrachain antiferromagnetic interactions for 1 and ferromagnetic interactions for 2, respectively. Complex 3 is a magnetic dilute system due to the diamagnetic nature of Co(III). Further magnetic investigations show that complexes 1 and 2 are dominated by the 3D antiferromagnetic ordering with T(N) = 7.2 K for 1 and 9.5 K for 2. It is worth noting that the weak frequency-dependent phenomenon of AC susceptibilities was observed in the low-temperature region in both 1 and 2, suggesting the presence of slow magnetic relaxations.  相似文献   

18.
Ni ZH  Kou HZ  Zhang LF  Ni WW  Jiang YB  Cui AL  Ribas J  Sato O 《Inorganic chemistry》2005,44(26):9631-9633
A new cyanide-containing building block K[Fe(pcq)(CN)(3)] [1; pcq(-) = 8-(pyridine-2-carboxamido)quinoline anion] containing a low-spin Fe(III) center with three cyanide groups in a meridional arrangement has been successfully designed and synthesized. Three cyanide-bridged trinuclear Fe(III)(2)Mn(II) complexes, [Fe(pcq)(CN)(3)](2)[Mn(CH(3)OH)(2)(H(2)O)(2)].2H(2)O (2), [Fe(pcq)(CN)(3)](2)[Mn(bipy)(2)].CH(3)OH.2H(2)O (3), and [Fe(pcq)(CN)(3)](2)[Mn(phen)(2)].CH(3)OH.2H(2)O (4), have been synthesized and structurally characterized. The magnetic susceptibilities of the three heterometallic complexes have been investigated.  相似文献   

19.
Wang M  Ma CB  Yuan DQ  Wang HS  Chen CN  Liu QT 《Inorganic chemistry》2008,47(13):5580-5590
A family of manganese complexes, [Mn 5O 3( t-BuPO 3) 2(MeCOO) 5(H 2O)(phen) 2] ( 1), [Mn 5O 3( t-BuPO 3) 2(PhCOO) 5(phen) 2] ( 2), [Mn 4O 2( t-BuPO 3) 2(RCOO) 4(bpy) 2] (R = Me, ( 3); R = Ph, ( 4)), NBu (n) 4[Mn 4O 2(EtCOO) 3(MeCOO) 4(pic) 2] ( 5), NR' 4[Mn 4O 2( i-PrCOO) 7(pic) 2] (R' = Bu (n) , ( 6); R' = Et, ( 7)), were synthesized and characterized. The seven manganese clusters were all prepared from a reaction system containing tert-butylphosphonic acid, Mn(O 2CR) 2 (R = Me, Ph) and NR' 4MnO 4 (R' = Bu (n) , Et) with similar procedures except for using different N-containing ligands (1,10-phenanthroline (phen), 2,2'-bipyridine (bpy) and picolinic acid (picH)) as coligands. The structures of these complexes vary with the N-containing donors. Both the cores of complexes 1 and 2 feature three mu 3-O and two capping t-BuPO 3 (2-) groups bridging five Mn (III) atoms to form a basket-like cage structure. Complexes 3 and 4 both have one [Mn 4(mu 3-O) 2] (8+) core with four coplanar Mn (III) atoms disposed in an extended "butterfly-like" arrangement and two capping mu 3- t-BuPO 3 (2-) binding to three manganese centers above and below the Mn 4 plane. Complexes 5, 6, and 7 all possess one [Mn 4(mu 3-O) 2] (8+) core just as complexes 3 and 4, but they display a folded "butterfly-like" conformation with the four Mn (III) atoms nonplanar. Thus, the seven compounds are classified into three types, and three representative compounds 1.2H 2O.MeOH.MeCN , 3.6H 2O.2MeCOOH , and 5.0.5H 2O have been characterized by IR spectroscopy, ESI-MS spectroscopy, magnetic measurements and in situ UV-vis-NIR spectroelectrochemical analysis. Magnetic susceptibility measurements reveal the existence of both ferromagnetic and antiferromagnetic interactions between the adjacent Mn (III) ions in compound 1.2H 2O.MeOH.MeCN , and antiferromagnetic interactions in 3.6H 2O.2MeCOOH and 5.0.5H 2O. Fitting the experimental data led to the following parameters: J 1 = -2.18 cm (-1), J 2 = 6.93 cm (-1), J 3 = -13.94 cm (-1), J 4 = -9.62 cm (-1), J 5 = -11.17 cm (-1), g = 2.00 ( 1.2H 2O.MeOH.MeCN ), J 1 = -5.41 cm (-1), J 2 = -35.44 cm (-1), g = 2.13, zJ' = -1.55 cm (-1) ( 3.6H 2O.2MeCOOH ) and J 1 = -2.29 cm (-1), J 2 = -35.21 cm (-1), g = 2.02, zJ' = -0.86 cm (-1) ( 5.0.5H 2O ).  相似文献   

20.
The iron(III) complexes [Fe(2)(HPTB)(mu-OH)(NO(3))(2)](NO(3))(2).CH(3)OH.2H(2)O (1), [Fe(2)(HPTB)(mu-OCH(3))(NO(3))(2)](NO(3))(2).4.5CH(3)OH (2), [Fe(2)(HPTB)(mu-OH)(OBz)(2)](ClO(4))(2).4.5H(2)O (3), [Fe(2)(N-EtOH-HPTB)(mu-OH)(NO(3))(2)](ClO(4))(NO(3)).3CH(3)OH.1.5H(2)O (4), [Fe(2)(5,6-Me(2)-HPTB)(mu-OH)(NO(3))(2)](ClO(4))(NO(3)).3.5CH(3)OH.C(2)H(5)OC(2)H(5).0.5H(2)O (5), and [Fe(4)(HPTB)(2)(mu-F)(2)(OH)(4)](ClO(4))(4).CH(3)CN.C(2)H(5)OC(2)H(5).H(2)O (6) were synthesized (HPTB = N,N,N',N'-tetrakis(2-benzimidazolylmethyl)-2-hydroxo-1,3-diaminopropane, N-EtOH-HPTB = N,N,N',N'-tetrakis(N' '-(2-hydroxoethyl)-2-benzimidazolylmethyl)-2-hydroxo-1,3-diaminopropane, 5,6-Me(2)-HPTB = N,N,N',N'-tetrakis(5,6-dimethyl-2-benzimidazolylmethyl)-2-hydroxo-1,3-diaminopropane). The molecular structures of 2-6 were established by single-crystal X-ray crystallography. Iron(II) complexes with ligands similar to the dinucleating ligands described herein have been used previously as model compounds for the dioxygen uptake at the active sites of non-heme iron enzymes. The same metastable (mu-peroxo)diiron(III) adducts were observed during these studies. They can be prepared by adding hydrogen peroxide to the iron(III) compounds 1-6. Using stopped-flow techniques these reactions were kinetically investigated in different solvents and a mechanism was postulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号