首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In elastoplastic soil models aimed at capturing the impact of fabric anisotropy, a necessary ingredient is a measure of anisotropic fabric in the form of an evolving tensor. While it is possible to formulate such a fabric tensor based on indirect phenomenological observations at the continuum level, it is more effective and insightful to have the tensor defined first based on direct particle level microstructural observations and subsequently deduce a corresponding continuum definition. A practical means able to provide such observations, at least in the context of fabric evolution mechanisms, is the discrete element method (DEM). Some DEM defined fabric tensors such as the one based on the statistics of interparticle contact normals have already gained widespread acceptance as a quantitative measure of fabric anisotropy among researchers of granular material behavior. On the other hand, a fabric tensor in continuum elastoplastic modeling has been treated as a tensor-valued internal variable whose evolution must be properly linked to physical dissipation. Accordingly, the adaptation of a DEM fabric tensor definition to a continuum constitutive modeling theory must be thermodynamically consistent in regards to dissipation mechanisms. The present paper addresses this issue in detail, brings up possible pitfalls if such consistency is violated and proposes remedies and guidelines for such adaptation within a recently developed Anisotropic Critical State Theory (ACST) for granular materials.  相似文献   

2.
3.
Deformation induced anisotropy in polycrystalline solids results mainly from crystallographic slip due to dislocation motion at the grain level and texture development due to grain rotation at the aggregate level. To describe these characteristics, the so-called scale invariance approach is adopted which allows information and constitutive relations pertaining to single slip to be cast in a form of macroscopic constitutive equations. An orientation distribution function (ODF) and a texture tensor are introduced into the earlier version (based on the hypotheses of single slip at the grain level and isotropic distribution of the crystallites at the aggregate level) of the scale invariance framework to describe texture effects in plastically deformed polycrystals. The texture tensor is calculated either directly through the solution of ODF, or indirectly through an appropriate set of evolution equations for the orientation tensors and the use of a closure approximation. Theoretical predictions for anisotropic yield and plastic flow behavior compare well with available experimental data.  相似文献   

4.
吴建营 《力学学报》2009,41(5):696-707
微裂缝演化(损伤)引起的各向异性和单边效应,对于混凝土材料和结构的变形和内力有非常重要的影响. 在描述单边效应时,已有的各向异性损伤模型均会得出与热力学基本原理相矛盾的结论即损伤卸载时能量耗散不为零. 基于不可逆热力学和内变量理论,直接以材料柔度张量的增量作为损伤内变量,建立了各向异性单边损伤模型的一般形式,给出了热力学相容的投影算子,推导了模型的率本构关系.文中详细发展了模型的Newton-Raphson数值实现算法及其算法一致性模量,建立了合理的损伤准则和演化法则并应用于混凝土材料. 数值模拟结果初步验证了建议模型的有效性. 需要说明的是,模型完全构筑于热力学基础上,无需引入应变 等效或应变能等效等经验性假定.   相似文献   

5.
Analysis of the mechanical properties of engineering materials with microstructure generally requires modification of the concept of a simple material. One approach is the theory of micropolar materials which introduces an independent rotation of a material element and the resulting stress and strain tensors are generally non-symmetric. In two-dimensional material models these microstructures are often represented by geometries which exhibit three-fold symmetry in the plane. In this work we investigate the form of the constitutive relations which this three-fold symmetry imposes. We show that three-fold symmetry requires both the stress and couple stress tensors to be isotropic in the plane. We obtain specific constitutive relations for an equilateral triangle structure and for a hexagonal or honeycomb structure and compare these results with the results of previous investigations of these two-dimensional material models.  相似文献   

6.
A phenomenological model for evolving anisotropy at large strains is presented. The model is formulated using spatial quantities and the anisotropic properties of the material is modeled by including structural variables. Evolution of anisotropy is accounted for by introducing substructural deformation gradients which are linear maps similar to the usual deformation gradient. The evolution of the substructural deformation gradients is governed by the substructural plastic velocity gradients in a manner similar to that for the continuum. Certain topics related to the numerical implementation are discussed and a simple integration scheme for the local constitutive equations is developed. To demonstrate the capabilities of the model it is implemented into a finite element code. Two numerical examples are considered: deformation of uniform plate with circular hole and the drawing of a cup. In the two examples it is assumed that initial cubic material symmetry applies to both the elastic and plastic behavior. To be specific, a polyconvex Helmholtz free energy function together with a yield function of quadratic type is adopted.  相似文献   

7.
A phase field model of fracture that accounts for anisotropic material behavior at small and large deformations is outlined within this work. Most existing fracture phase field models assume crack evolution within isotropic solids, which is not a meaningful assumption for many natural as well as engineered materials that exhibit orientation-dependent behavior. The incorporation of anisotropy into fracture phase field models is for example necessary to properly describe the typical sawtooth crack patterns in strongly anisotropic materials. In the present contribution, anisotropy is incorporated in fracture phase field models in several ways: (i) Within a pure geometrical approach, the crack surface density function is adopted by a rigorous application of the theory of tensor invariants leading to the definition of structural tensors of second and fourth order. In this work we employ structural tensors to describe transverse isotropy, orthotropy and cubic anisotropy. Latter makes the incorporation of second gradients of the crack phase field necessary, which is treated within the finite element context by a nonconforming Morley triangle. Practically, such a geometric approach manifests itself in the definition of anisotropic effective fracture length scales. (ii) By use of structural tensors, energetic and stress-like failure criteria are modified to account for inherent anisotropies. These failure criteria influence the crack driving force, which enters the crack phase field evolution equation and allows to set up a modular structure. We demonstrate the performance of the proposed anisotropic fracture phase field model by means of representative numerical examples at small and large deformations.  相似文献   

8.
9.
磁致伸缩材料的非线性本构关系   总被引:7,自引:1,他引:6  
给出了磁致伸缩材料的两个非线性本构关系,即标准平方型和双曲正切型。在确定一维问题的本构系数时,基于已有的实验结果,引进一个材料函数,用来描述磁致伸缩材料的压磁系数随预应力变化的关系。将非 线性本构关系的理论模型计算结果与实验曲线对比,结果表明标准平方型本构关系在中低磁场下能精确地模拟实验曲线,而双曲正切型本构关系在高磁场时能反映材料的磁致应变饱和现象。讨论了在标准平方型本构的一般三维情形,给出了确定本构系数的方法。  相似文献   

10.
11.
Plastic constitutive relations are derived for a class of anisotropic porous materials consisting of coaxial spheroidal voids, arbitrarily oriented relative to the embedding orthotropic matrix. The derivations are based on nonlinear homogenization, limit analysis and micromechanics. A variational principle is formulated for the yield criterion of the effective medium and specialized to a spheroidal representative volume element containing a confocal spheroidal void and subjected to uniform boundary deformation. To obtain closed form equations for the effective yield locus, approximations are introduced in the limit-analysis based on a restricted set of admissible microscopic velocity fields. Evolution laws are also derived for the microstructure, defined in terms of void volume fraction, aspect ratio and orientation, using material incompressibility and Eshelby-like concentration tensors. The new yield criterion is an extension of the well known isotropic Gurson model. It also extends previous analyses of uncoupled effects of void shape and material anisotropy on the effective plastic behavior of solids containing voids. Preliminary comparisons with finite element calculations of voided cells show that the model captures non-trivial effects of anisotropy heretofore not picked up by void growth models.  相似文献   

12.
In this work, the question of homogenizing linear elastic, heterogeneous materials with periodic microstructures in the case of non-separated scales is addressed. A framework if proposed, where the notion of mesoscopic strain and stress fields are defined by appropriate integral operators which act as low-pass filters on the fine scale fluctuations. The present theory extends the classical linear homogenization by substituting averaging operators by integral operators, and localization tensors by nonlocal operators involving appropriate Green functions. As a result, the obtained constitutive relationship at the mesoscale appears to be nonlocal. Compared to nonlocal elastic models introduced from a phenomenological point of view, the nonlocal behavior has been fully derived from the study of the microstructure. A discrete version of the theory is presented, where the mesoscopic strain field is approximated as a linear combination of basis functions. It allows computing the mesoscopic nonlocal operator by means of a finite number of transformation tensors, which can be computed numerically on the unit cell.  相似文献   

13.
提出了利用率相关晶体塑性模型标定织相可调本构模型的求解步骤,得出了一组依赖于晶粒间相互作用假设而独立于具体板材织构的本构相关系数.以此为基础再结合板材织构系数所得出的本构模型系数可避免出现屈服面非外凸的情形.利用所提求解步骤对在不同热处理条件下产生不同织构的AL5052铝合金板的深拉成形过程进行了有限元模拟.结果再现了典型织构在板材成形过程中所出现的塑性各向异性,从而表明求解步骤的可行性.  相似文献   

14.
The paper discusses the derivation and the numerical implementation of a finite strain material model for plastic anisotropy and nonlinear kinematic and isotropic hardening. The model is derived from a thermodynamic framework and is based on the multiplicative split of the deformation gradient in the context of hyperelasticity. The kinematic hardening component represents a continuum extension of the classical rheological model of Armstrong–Frederick kinematic hardening. Introducing the so-called structure tensors as additional tensor-valued arguments, plastic anisotropy can be modelled by representing the yield surface and the plastic flow rule as functions of the structure tensors. The evolution equations are integrated by a new form of the exponential map that preserves plastic incompressibility and uses the spectral decomposition to evaluate the exponential tensor functions in closed form. Finally, the applicability of the model is demonstrated by means of simulations of several deep drawing processes and comparisons with experiments.  相似文献   

15.
16.
The mechanical properties of open cell structures made from an elastic–plastic bulk material are investigated by Finite Element simulations. The influence of structural irregularities on elasto-plasticity and deformation localization of open cell structures is analyzed. Six regular three-dimensional generic structures with a relative density of 12.5% are modeled by a unit cell approach for predicting the entire tensors of elasticity. From these six structures the two structures with the lowest and the highest elastic anisotropy are selected for further studies, introducing various degrees of structural irregularities. The effect of these irregularities on the linear and nonlinear behavior as well as the influence on the deformation localization is studied employing finite sample models. Results are presented by means of the direction dependent Young’s moduli, deformation plots, overall stress–strain curves, and histograms of the energy distribution.  相似文献   

17.
The goal of the present work is to modify structure of the creep constitutive equations existing in the literature, and simultaneously to incorporate both damage induced anisotropy and unilateral damage into the constitutive model. The proposed nonlinear-tensor constitutive equation for creep together with the damage evolution equation take into account the secondary and tertiary creep of the initially isotropic materials. The material parameters of the model are determined using basic experiments. It is shown that the creep model is capable of describing available experimental data for the lateral creep responses under uniaxial compression.  相似文献   

18.
混凝土本构模型及其动态有限元算法研究   总被引:2,自引:0,他引:2  
陈书宇  陈成光 《力学季刊》1998,19(2):109-117
混凝土的力学性质及其本构研究是当前力学领域的一个重要课题。混凝土的实验数据表明其力学性质表现出很强的各向异性及并且在高加载速率的情况下,混凝土的性质物美价廉 时时明显不同。这就要求我们采用应变率相关的弹粘弹性本构模型来描述混凝土的力学行为。本语文从Ottosen的四参数混凝土模型出发,引进损伤和应变率的影响,参考关联塑性的理论,改进了混凝土的本构模型。为了把混凝土的数值模拟推向实用,本文概括混凝土  相似文献   

19.
Multi-scale computational models offer tractable means to simulate sufficiently large spatial domains comprised of heterogeneous materials by resolving material behavior at different scales and communicating across these scales. Within the framework of computational multi-scale analyses, hierarchical models enable unidirectional transfer of information from lower to higher scales, usually in the form of effective material properties. Determining explicit forms for the macroscale constitutive relations for complex microstructures and nonlinear processes generally requires numerical homogenization of the microscopic response. Conventional low-order homogenization uses results of simulations of representative microstructural domains to construct appropriate expressions for effective macroscale constitutive parameters written as a function of the microstructural characterization. This paper proposes an alternative novel approach, introduced as the distribution-enhanced homogenization framework or DEHF, in which the macroscale constitutive relations are formulated in a series expansion based on the microscale constitutive relations and moments of arbitrary order of the microscale field variables. The framework does not make any a priori assumption on the macroscale constitutive behavior being represented by a homogeneous effective medium theory. Instead, the evolution of macroscale variables is governed by the moments of microscale distributions of evolving field variables. This approach demonstrates excellent accuracy in representing the microscale fields through their distributions. An approximate characterization of the microscale heterogeneity is accounted for explicitly in the macroscale constitutive behavior. Increasing the order of this approximation results in increased fidelity of the macroscale approximation of the microscale constitutive behavior. By including higher-order moments of the microscale fields in the macroscale problem, micromechanical analyses do not require boundary conditions to ensure satisfaction of the original form of Hill's lemma. A few examples are presented in this paper, in which the macroscale DEHF model is shown to capture the microscale response of the material without re-parametrization of the microscale constitutive relations.  相似文献   

20.
姚仰平  唐科松 《力学学报》2022,54(6):1651-1659
在不同方向的力学参数、结构特性及应力应变关系的不同为材料的各向异性, 建立能够反映这种复杂特性的强度准则、本构模型, 对于材料本构关系的研究具有重要的理论意义. 但材料的各向异性一直是其力学特性描述的难点, 对此, 郑泉水院士提出了各向同性化定理, 为后续研究解决材料的各向异性问题提供了方向及思路. 作者等针对土的应力诱导各向异性提出了变换应力方法, 这种方法同样遵循对材料进行各向异性问题各向同性化处理的思路, 与郑泉水院士的各向同性化定理是一脉相承的, 也是对各向同性化定理的发展. 本文旨在通过分析各向同性化定理与变换应力方法明确两者间的内在联系, 并以土材料的应力诱导各向异性处理为例, 说明在具体材料的各向异性处理过程中面临的现实问题以及变换应力方法是如何解决这些问题的. 分析并给出了变换应力方法应用时的三个合理假设, 推导出了具体的变换应力数学公式, 阐明了在考虑土的应力诱导各向异性的具体函数已经给出的情况下, 在构造土的弹塑性本构模型中采用变换应力方法的必要性.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号