首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of magnetic field dependent viscosity on thermosolutal convection in a ferromagnetic fluid saturating a porous medium is considered for a fluid layer heated and soluted from below in the presence of uniform magnetic field. Using linearized stability theory and normal mode analysis, an exact solution is obtained for the case of two free boundaries. For case of stationary convection, medium permeability has a destabilizing effect, whereas a stable solute gradient and magnetic field dependent viscosity have a stabilizing effect on the system. In the absence of magnetic field dependent viscosity, the destabilizing effect of non-buoyancy magnetization is depicted but in the presence of magnetic field dependent viscosity non-buoyancy magnetization may have a destabilizing or stabilizing effect on the onset of instability. The critical wave number and the critical magnetic thermal Rayleigh number for the onset of instability are also determined numerically for sufficiently large values of buoyancy magnetization parameter M1 and the results are depicted graphically. The principle of exchange of stabilities is found to hold true for the ferromagnetic fluid saturating a porous medium heated from below in the absence of stable solute gradient. The oscillatory modes are introduced due to the presence of the stable solute gradient, which were non-existent in its absence. A sufficient condition for the non-existence of overstability is also obtained. The paper also reaffirms the qualitative findings of earlier investigations which are, in fact, limiting cases of the present study.  相似文献   

2.
This paper studies Rayleigh-Bénard convection of micropolar fluid layer heated from below with realistic boundary conditions. A specific approach for stability analysis of a convective problem based on variational principle is applied to characterize the Rayleigh number for quite general nature of bounding surfaces. The analysis consists of replacing the set of field equations by a variational principle and the expressions for Rayleigh number are then obtained by using trial function satisfying the essential boundary conditions. Further, the values of the Rayleigh number for particular cases of large and small values of the microrotation coefficient have been obtained. The effects of wave number and micropolar parameter on the Rayleigh numbers for onset of stationary instability for each possible combination of the bounding surfaces are discussed and illustrated graphically. The present analysis establishes that the nature of bounding surfaces combination and microrotation have significant effect on the onset of convection.  相似文献   

3.
Thermal gravity convection in a horizontal layer of compressible perfect gas heated from below and a van der Waals gas near the critical state is investigated. The characteristics of the isentropic equilibrium of a compressible medium with a van der Waals equation of state are considered. The known conditions of convection onset in the perfect and van der Waals gases are checked on the basis of a solution of the complete and linearized equations. The restrictions imposed in deriving the known formulas for the adiabatic temperature gradients used in the conditions of absence and onset of convection are discussed. The characteristics of the convective heat transfer are examined, including the causes of the heat-transfer deterioration in the near-critical medium above the hydrostatic equilibrium threshold.  相似文献   

4.
The double diffusive convection in a horizontal couple stress fluid saturated anisotropic porous layer, which is heated and salted from below, is studied analytically. The modified Darcy equation that includes the time derivative term is used to model the momentum equation. The critical Rayleigh number, wavenumber for stationary and oscillatory modes, and frequency of oscillations are obtained analytically using linear theory. The effect of anisotropy parameter, solute Rayleigh number, Lewis number, couple stress parameter, and Vadasz number on the stationary, oscillatory, and finite amplitude convection is shown graphically. It is found that the thermal anisotropy parameter, couple stress parameter, and solute Rayleigh number have stabilizing effect on the stationary, oscillatory, and finite amplitude convection. The mechanical anisotropy parameter has destabilizing effect on stationary, oscillatory, and finite amplitude convection. The Lewis number has stabilizing effect in the case of stationary and finite amplitude modes, with dual effect in the case of oscillatory convection. Vadasz number advances the onset of oscillatory convection. The heat and mass transfer decrease with an increase in the values of couple stress parameter, while both increase with an increase in the value of solute Rayleigh number and mechanical anisotropy parameter. The thermal anisotropy parameter and Lewis number have contrasting effect on the heat mass transfer.  相似文献   

5.
The stability of a conducting fluid saturating a porous medium, in the presence of a uniform magnetic field, is investigated using the Brinkman model. In the first part of the paper constant-flux thermal boundary conditions are considered for which the onset of convection is known to correspond to a vanishingly small wave number. The external magnetic field is assumed to be aligned with gravity. Closed form solutions are obtained, based on a parallel flow assumption, for a porous layer with either rigid-rigid, rigid-free or free-free boundaries. In the second part of the paper, the linear stability of a porous layer, heated isothermally from below, is investigated using the normal mode technique. The external magnetic field is applied either vertically or horizontally. Solutions are obtained for the case of a porous layer with free boundaries. Results for a pure viscous fluid and a Darcy (densely packed) porous medium emerge from the present analysis as limiting cases.  相似文献   

6.
Numerical and analytical investigations of the thermosolutal instability in a viscoelastic Rivlin-Ericksen fluid are carried out in the presence of a uniform vertical magnetic field to include the Hall current with a uniform angular velocity in a porous medium. For stationary convection, the stable solute gradient parameter and the rotation have stabilizing effects on the system, whereas the magnetic field and the medium permeability have stabilizing or destabilizing effects on the system under certain conditions. The Hall current in the presence of rotation has stabilizing effects for sufficiently large Taylor numbers, whereas in the absence of rotation, the Hall current always has destabilizing effects. These effects have also been shown graphically. The viscoelastic effects disappear for stationary convection. The stable solute parameter, the rotation, the medium permeability, the magnetic field parameter, the Hall current, and the vis-coelasticity introduce oscillatory modes into the system, which are non-existent in their absence. The sufficient conditions for the non-existence of overstability are also obtained.  相似文献   

7.
We performed experimental and numerical studies of combined effects of thermal buoyancy and magnetization force applied on a cubical enclosure of a paramagnetic fluid heated from below and cooled from top. The temperature difference between the hot and cold wall was kept constant. After considering neutral situation (i.e. a pure natural convection case), magnetic fields of different intensity were imposed. The magnetization force produced significant changes in flow (transition from laminar to turbulent regimes), wall-heat transfer (enhancement) and turbulence (turbulence structures reorganization). The strong magnetic field and its gradients were generated by a superconducting magnet which can generate magnetic field up to 10 T and where gradients of the magnetic induction can reach up to 900 T2/m. A good agreement between experiments and numerical simulations was obtained in predicting the integral wall heat transfer over entire range of considered working parameters. Numerical simulations provided a detailed insights into changes of the local wall-heat transfer and long-term time averaged first and second moments for different strengths of the imposed magnetic induction.  相似文献   

8.
S. Das  B. C. Sarkar  R. N. Jana 《Meccanica》2013,48(6):1387-1398
Effects of Hall current on MHD free convection boundary layer flow of a viscous incompressible electrically conducting fluid past a heated vertical flat plate of finite dimension in the presence of a uniform transverse magnetic field have been studied. An exact solution of the governing equations describing the flow has been obtained. The velocity field, induced magnetic field and bulk temperature distributions in the boundary layer flow have been discussed. It is found that the velocity components increase with an increase in Hall parameter. It is noticed that the induced magnetic field components are radically influenced by the Hall parameter. It is also found that the magnitude of bulk temperature in the x-direction decreases with an increase in either Hall parameter or magnetic parameter. On the other hand, the magnitude of the bulk temperature in the z-direction increases with an increase in Hall parameter whereas it decreases with an increase in magnetic parameter.  相似文献   

9.
The effect of rotation on the onset of double diffusive convection in a sparsely packed anisotropic porous layer, which is heated and salted from below, is investigated analytically using the linear and nonlinear theories. The Brinkman model that includes the Coriolis term is employed for the momentum equation. The critical Rayleigh number, wavenumber for stationary and oscillatory modes and a dispersion relation are obtained analytically using linear theory. The effect of anisotropy parameters, Taylor number, Darcy number, solute Rayleigh number, Lewis number, Darcy–Prandtl number, and normalized porosity on the stationary, oscillatory and finite amplitude convection is shown graphically. It is found that contrary to its usual influence on the onset of convection in the absence of rotation, the mechanical anisotropy parameter show contrasting effect on the onset criterion at moderate and high rotation rates. The nonlinear theory based on the truncated representation of Fourier series method is used to find the heat and mass transfers. The effect of various parameters on heat and mass transfer is shown graphically. Some of the convection systems previously reported in the literature is shown to be special cases of the system presented in this study.  相似文献   

10.
This paper investigates the effect of non-uniform temperature gradient and magnetic field on Marangoni convection in a horizontal fluid layer heated from below and cooled from above with a constant heat flux. A linear stability analysis is performed. The influence of various parameters on the convection onset is analyzed. Six non-uniform basic temperature profiles are considered, and some general conclusions about their desta- bilizing effects are presented.  相似文献   

11.
In this paper, the steady boundary layer flow and heat transfer of a micropolar fluid on an isothermal continuously moving plane surface is studied analytically. It is assumed that the microinertia density is variable and the viscous dissipation effect is taken into account. The system of nonlinear ordinary differential equations is solved analytically using the homotopy analysis method (HAM) and the results are obtained for various flow and heat transfer characteristics. By using HAM, accurate analytic series solutions are obtained in the whole spatial region. Also, a new suggestion for choosing the proper value of the auxiliary parameter ? in the convergence region is proposed. It is observed that the present solutions have higher accuracy when the residual error is obtained. The present results show that this algorithm is effective and can be similarly applied to other nonlinear equations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
We numerically simulate the initiation of an average convective flow in a system composed of a horizontal binary fluid layer overlying a homogeneous porous layer saturated with the same fluid under gravitational field and vibration. In the layers, fixed equilibrium temperature and concentration gradients are set. The layers execute high-frequency oscillations in the vertical direction. The vibration period is small compared with characteristic timescales of the problem. The averaging method is applied to obtain vibrational convection equations. Using for computation the shooting method, a numerical investigation is carried out for an aqueous ammonium chloride solution and packed glass spheres saturated with the solution. The instability threshold is determined under two heating conditions—on heating from below and from above. When the solution is heated from below, the instability character changes abruptly with increasing solutal Rayleigh number, i.e., there is a jump-wise transition from the most dangerous shortwave perturbations localized in the fluid layer to the long-wave perturbations covering both layers. The perturbation wavelength increases by almost 10 times. Vibrations significantly stabilize the fluid equilibrium state and lead to an increase in the wavelength of its perturbations. When the fluid with the stabilizing concentration gradient is heated from below, convection can occur not only in a monotonous manner but also in an oscillatory manner. The frequency of critical oscillatory perturbations decreases by 10 times, when the long-wave instability replaces the shortwave instability. When the fluid is heated from above, only stationary convection is excited over the entire range of the examined parameters. A lower monotonic instability level is associated with the development of perturbations with longer wavelength even at a relatively large fluid layer thickness. Vibrations speed up the stationary convection onset and lead to a decrease in the wavelength of most dangerous perturbations of the motionless equilibrium state. In this case, high enough amplitudes of vibration are needed for a remarkable change in the stability threshold. The results of numerical simulation show good agreement with the data of earlier works in the limiting case of zero fluid layer thickness.  相似文献   

13.
The onset of the Benard–Marangoni convection in a horizontal porous layer permeated by a magnetohydrodynamic fluid with a nonlinear magnetic permeability is examined. The porous layer is assumed to be governed by the Brinkman model; it is bounded by a rigid surface from below and by a non-deformable free surface from above and subjected to a non-vertical magnetic field. The critical effective Marangoni number and the critical Rayleigh number are obtained for different values of the effective Darcy number, Biot number, Chandrasekhar number, nonlinear magnetic parameter, and angle from the vertical axis for the cases of stationary convection and overstability. The related eigenvalue problem is solved by using the first-order Chebyshev polynomial method.  相似文献   

14.
Double diffusive convection in a fluid-saturated rotating porous layer heated from below and cooled from above is studied when the fluid and solid phases are not in local thermal equilibrium, using both linear and non-linear stability analyses. The Darcy model that includes the time derivative and Coriolis terms is employed as momentum equation. A two-field model that represents the fluid and solid phase temperature fields separately is used for energy equation. The onset criterion for stationary, oscillatory and finite amplitude convection is derived analytically. It is found that small inter-phase heat transfer coefficient has significant effect on the stability of the system. There is a competition between the processes of thermal and solute diffusions that causes the convection to set in through either oscillatory or finite amplitude mode rather than stationary. The effect of solute Rayleigh number, porosity modified conductivity ratio, Lewis number, diffusivity ratio, Vadasz number and Taylor number on the stability of the system is investigated. The non-linear theory based on the truncated representation of Fourier series method predicts the occurrence of subcritical instability in the form of finite amplitude motions. The effect of thermal non-equilibrium on heat and mass transfer is also brought out.  相似文献   

15.
The onset of convection in a system of two horizontal layers (a pure liquid and a porous medium saturated with the same liquid) heated from below under the action of vertical vibration is investigated. For describing the free thermal convection, in the liquid layer the Boussinesq approximation and in the porous layer the Darcy-Boussinesq approximation are used. In the limiting case of a thin liquid layer, effective boundary conditions on the upper boundary of the porous layer with account for convection in the liquid layer are obtained and it is shown that vibration has a stabilizing effect, whereas the presence of a liquid layer leads to destabilization. For an arbitrary liquid to porous layer thickness ratio the onset of convection is investigated numerically. In the case of a thin liquid layer there are two (short-and long-wave) unstable modes. In the case of thick layers the neutral curves are unimodal. Vibration has a stabilizing effect on perturbations with any wave number but affects short-wave perturbations much more strongly than long-wave ones.  相似文献   

16.
M. Z. Salleh  R. Nazar  I. Pop 《Meccanica》2012,47(5):1261-1269
In this paper, the problem of free convection boundary layer flow on a solid sphere in a micropolar fluid with Newtonian heating, in which the heat transfer from the surface is proportional to the local surface temperature, is considered. The transformed boundary layer equations in the form of partial differential equations are solved numerically using an implicit finite-difference scheme. Numerical solutions are obtained for the local wall temperature, the local skin friction coefficient, as well as the velocity, angular velocity and temperature profiles. The features of the flow and heat transfer characteristics for different values of the material or micropolar parameter K, the Prandtl number Pr and the conjugate parameter γ are analyzed and discussed.  相似文献   

17.
In this paper the problem of mixed convection on a moving vertical cylinder with suction in a moving micropolar fluid medium has been investigated, using finite element method. The effect of important parameters, namely micropolar parameter, suction parameter and velocity coefficient parameter have been discussed on the velocity, microrotation and temperature functions when the velocity of the cylinder is greater than the free stream velocity. Skin friction and the Nusselt number have also been computed, which are given in the table. The temperature distribution is effected moderately by the motion of the cylinder as well with the buoyancy parameter.  相似文献   

18.
The double diffusive convection in a horizontal anisotropic porous layer saturated with a Boussinesq binary fluid, which is heated and salted from below in the presence of Soret and DuFour effects is studied analytically using both linear and non-linear stability analyses. The linear analysis is based on the usual normal mode technique, while the non-linear analysis is based on a minimal representation of double Fourier series. The generalized Darcy model including the time derivative term is employed for the momentum equation. The critical Rayleigh number, wavenumbers for stationary and oscillatory modes, and frequency of oscillations are obtained analytically using linear theory. The effects of anisotropy parameter, solute Rayleigh number, and Soret and DuFour parameters on the stationary, oscillatory convection, and heat and mass transfer are shown graphically. Some known results are recovered as special cases of the present problem.  相似文献   

19.
The criteria for the onset of thermocapillary convection in a horizontal radiating fluid layer heated by an incident thermal radiative energy source are determined. The fluid layer is an absorbing and isotropically scattering medium confined between a free upper surface and an insulated rigid lower surface. Linear analysis is performed on the continuity, momentum, energy, and approximate radiative equations. The resulting disturbance equations are solved using a numerical optimization technique to obtain the eigenvalues governing the onset of convective motion. The influence of thermal radiation on the critical Marangoni number is examined. Attention is drawn to the physical significance of the heat transfer mode, gravitational force, the scattering effect, and the surface radiative properties. The conditions leading to the onset of convection are presented as functions of the optical thickness, scattering albedo, Planck number, surface emissivities, and transmissivities.  相似文献   

20.
The equations of thermal vibrational convection of a generalized Newtonian fluid are presented in the case of high-frequency vibration. A condition of quasi-equilibrium of the generalized Newtonian fluid is formulated: its particular case is the condition for rigid (quasi-solid) state. The rigid state stability is investigated for the infinite inclined layer of the nonlinearly viscous Williamson fluid. It is shown that, when heated from below, the rigid state may lose stability for layers oriented almost vertically or horizontally. High-frequency vibration stabilizes the fluid equilibrium state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号