首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction between cationic surfactants and isopropylacrylamide-acrylic acid-ethyl methacrylate (IPA:AA:EMA) terpolymers has been investigated using steady-state fluorescence and spectrophotometric measurements to assess the effect of the polymer composition on the aggregation process and terpolymers’ thermosensitivities. Micropolarity studies using pyrene show that the interaction of cationic surfactants with IPA:AA:EMA terpolymers occurs at surfactant concentrations much smaller than that observed for the pure surfactant in aqueous solution. The critical aggregation concentration (CAC) values decrease with both the hydrocarbon length of the surfactant and the content of ethyl methacrylate. These results were interpreted as a manifestation of the increasing contribution of attractive hydrophobic and electrostatic forces between negatively charged polymer chains and positively charged surfactant molecules. The increase of ethyl methacrylate in the copolymers lowers the CAC due to the larger hydrophobic character of the polymer backbone. The cloud point determination reveals that the lower critical solution temperatures (LCST) depend strongly on the copolymer composition and surfactant nature. The binding of surfactants molecules to the polymer chain screens the electrostatic repulsion between the carboxylic groups inducing a conformational transition and the dehydration of the polymer chain.  相似文献   

2.
The properties of aqueous solutions of acrylic acid-ethyl methacrylate (EMA) copolymers have been investigated using pyrene and pyrene pyrenebutyltrimethylammonium (PBTA) as probes. Static and dynamic fluorescence have been used to obtain information about the microenviron-ments formed. Micropolarity studies using the I1/I3 ratio of the vibronic bands of pyrene show the formation of hydrophobic domains. At low pH the increase of the amount of ethyl methacrylate in the copolymers shows that aqueous microdomains are excluded from the core of the polymer, for the copolymers with high content of EMA low polarity microdomains are still present on the mac-romolecular chain even at higher pH. The pH-induced conformational transition indicates that the more hydro-phobic copolymers adopt a more tightly coiled conformation. Compared to PAA, the decay times for both probes are increased twice for the polymer with 25% molar proportion of EMA. The fluorescence quenching of the probes by nitromethane depends on pH, copolymer composition and probe structure. The efficiency of quenching decreases with increase of the EMA proportion in the copolymers. Pyrene is more efficiently quenched than PBTA as a consequence of the latter being located in more internal (less accessible) sites of the polymer structure.  相似文献   

3.
A series of sodium methacrylate and poly(ethylene glycol) (PEG) comb copolymers (MAA/PEG) with approximate PEG chain lengths of 7, 11, and 22 ethylene oxide units were synthesized by free radical polymerization. Their weight-average molecular mass was found to be approximately 66 000. A commercial sample of a PEG comb polymer with an acrylic backbone was also used in the studies (Sokalan HP 80). The interaction of the MAA/PEG comb polymers and pure sodium methacrylate (SPMA) with sodium dodecyl sulfate (SDS) was studied by ESR spectroscopy using 5-doxyl stearic acid (5-DSA) spin probe and by conductivity measurements. Surfactant aggregation in water occurred at SDS concentrations lower than the surfactant critical micelle concentration (cmc) and depended on the polymer concentration. The observations have been attributed to changes in the effective ionic strength of the systems due to the polymer itself, and it has been concluded that there is no interaction between the MAA/PEG comb copolymers or SPMA and SDS. This has been confirmed by the fact that the decrease in surfactant aggregation concentration is similar in magnitude to the decrease observed on adding NaCl when counterion ion condensation effects are taken into account. It is apparent that the electrostatic repulsions between the surfactant molecules and the methacrylate backbone of the MAA/PEG comb copolymers inhibit association of SDS with the PEG side chains.  相似文献   

4.
The interactions of triblock copolymers (TBP) with ionic surfactants were studied employing surface tensiometry, electrical conductivity, steady-state fluorescence (SSF), and dynamic light scattering (DLS) techniques. An increasing trend in the critical micelle concentration (CMC) of SDS/CTAB in the presence of triblock copolymers was observed especially at higher polymer to surfactant ratio. The delay in the CMC of surfactants was more pronounced in the presence of E48B10E48 possibly due to its less hydrophobic nature. The negative values of free energy of micellization (ΔGm) both in case of SDS and CTAB confirmed the spontaneity of the processes. The aggregation number (Nagg) and hydrodynamic radius (Rh) of polymer/surfactant mixed systems were determined by SSF and DLS. The suppression of the surfactant micelle size in the presence of TBP was confirmed by SSF and DLS studies.  相似文献   

5.
A comparative study of the influence of anionic (sodium dodecyl sulfate, SDS), cationic (tetradecyltrimethylammonium bromide, TTAB) and non-ionic (penta-ethyleneglycol mono n-dodecyl ether, C12E5) surfactants on the structure and composition of adsorbed layers of cationic hydrophobically modified hydroxyethylcellulose (Quatrisoft LM 200) on hydrophilic surfaces (mica and silica) was carried out using surface force apparatus andin situ null ellipsometry. It is shown that a complex interplay of electrostatic, hydrophobic, and steric effect govern polymer/surfactant/surface interactions and that the effect of surfactant addition strongly depends on its nature and concentration.Both anionic and non-ionic surfactants exhibit aggregation on the polymer hydrophobes. SDS has the most profound influence on Quatrisoft interfacial behavior due to the changes in electrostatics accompanying formation of the polymer/surfactant complex. In the case of C12E5, large surfactant clusters bound to the polymer affect the macromolecules' conformation in the adsorbed layer via steric effects. In contrast to SDS and C12E5, no evidence of interaction between the polycation and a like-charged surfactant, TTAB, was obtained. At the same time, TTAB adsorbs on the surface in competition with the polyelectrolyte. This results in partial displacement of the latter and its looser attachment to the surface.  相似文献   

6.
The formation of micelles of hexadecyltrimethylammonium chloride (CTAC) and sodium dodecylsulfate (SDS) in aqueous solutions containing charged polysaccharides was studied by steady-state and time-resolved fluorescence measurements using pyrene as a photophysical probe. Micropolarity studies using the I1/I3 ratio of the vibronic emission bands of pyrene and the behaviour of the IE/IM ratio between the excimer and monomer emissions show the formation of hydrophobic domains. The interactions between the polyelectrolytes and surfactants of opposite charge lead to the formation of induced pre-micelles at surfactant concentrations lower than the critical micellar concentration (cmc) of the surfactants. At similar concentrations, the IE/IM ratio shows a peak. This aggregation process is assumed to be due to electrostatic attractions. At higher surfactant concentrations, near the critical micellar concentration, micelles with the same properties as those found in pure aqueous solution are formed. On the other hand, systems containing polyelectrolytes and surfactants of the same charge do not show this behaviour at low concentrations. The presence of long alkyl chains bound to the polyelectrolytes also induces the formation of free micelles at concentrations somewhat below the aqueous cmc.  相似文献   

7.
童真 《高分子科学》2003,(6):609-620
Our recent studies concerning the binding of ionic surfactants on oppositely charged polyelectrolytes observedwith fluorescence techniques are reviewed. The cationic surfactants cetyltrimethylammonium bromide (CTAB),dodecyltrimethylammonium chloride (DTAC), and nonionic surfactant octaethylene glycol monododecyl ether (C_(12)E_8) wereallowed to bind on anionic poly(2-acrylamido-2-methylpropanesulfonic acid) (PAMPS) and its pyrene and/or naphthalenelabeled copolymers. The relative excimer emission intensity I_E/I_M of a cationic probe l-pyrenemethylamine hydrochloride(PyMeA·HCl) and the non-radiative energy transfer (NRET) I_(Py)/I_(Np) of naphthalene to pyrene for labeled polyelectrolyteswere chosen to monitor the binding process and the conformation change of surfactant-bound polyelectrolytes. The 1:1aggregation of polyelectrolyte-CTAB with respect to the charge was found as long as the CTAB concentration was slightlyhigher than its critical aggregation concentration (CAC). The intermolecular NRET indicated that the CTAB-boundpolyelectrolytes aggregated together through the hydrophobic interaction between the CTAB tails. However, neither 1:1polyelectrolyte-DTAC aggregation nor intermolecular aggregation of DTAC-bound polyelectrolyte was observed owing to itsweaker hydrophobicity of 12 carbon atoms in the tail, which is shorter than that of CTAB. As known from the fluorescenceresults, nonionic surfactant C_(12)E_8 did not bind on the anionic polyelectrolytes, but the presence of PAMPS promoted themicelle formation for C_(12)E_8 at the CAC slightly below its critical micelle concentration (CMC). The solid complex of dansyllabeled AMPS copolymer-surfactant exhibited a decrease in local polarity with increasing charge density of thepolyelectrolyte or with alkane tail length of the surfactant. SAXS suggested a lamella structure for the AMPS copolymer-surfactant solid complexes with a long period of 3.87 nm for CTAB and 3.04 nm for DTAC, respectively.  相似文献   

8.
Single and mixed micelle formation by sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (SDBS) and their mixtures in pure water and in the presence of water-soluble polymers such as Synperonic 85 (triblock polymer, TBP), hydroxypropylcellulose (HPC), and carboxymethylcellulose sodium salt (CMC) were studied with the help of conductivity, pyrene fluorescence, cyclic voltammetry, and viscosity measurements. Conductivity measurements showed a single aggregation process for pure surfactants and their mixtures both in pure water as well as in the presence of water-soluble polymers. Triple breaks corresponding to two aggregation processes for SDS, SDBS, and their mixture in the presence of TBP were observed from fluorescence measurements. The first one demonstrated the critical aggregation process due to the adsorption of surfactant monomers on TBP macromolecule. The second one was attributed to the participation of surfactant–polymer aggregates formed at the first one, in the micelle formation process. The aggregation number ( N agg) of single and mixed micelles and diffusion coefficient ( D) of electroactive probe were computed from the fluorescence and cyclic voltammetry measurements, respectively. Both parameters, along with the viscosity results, indicated stronger SDS–polymer interactions in comparison to SDBS–polymer interactions. Mixed surfactant–polymer interactions showed compensating effects of both pure surfactants. The nature of mixed micelles was found to be ideal in all cases, as evaluated by applying the regular solution and Motomura's approximations.  相似文献   

9.
Thermodynamic properties of sodium dodecyl sulfate (SDS) in micellar aqueous solutions of L-serine and L-threonine were determined by fluorescence spectroscopy and dynamic light scattering techniques. The values of Gibbs free energy, enthalpy and entropy of the process of micelle formation were calculated using the critical micelle concentration and degree of dissociation. Changes in critical micelle concentration of SDS with the addition of amino acids were examined by both conductivity and pyrene I 1/I 3 ratio methods at different temperatures. The pyrene fluorescence spectra were used to study the change of micropolarity produced by the interaction of SDS with amino acids. The aggregation behavior of SDS was explained in terms of structural changes in mixed solutions. The data on dynamic light scattering suggest that size of SDS micelles was influenced by the presence of amino acids.  相似文献   

10.
Photophysical and solution properties of pyrene-labeled poly(3-dimethyl(methylmethacryloyl ethyl) ammonium propane sulfonate), poly(DMAPS/Py), were studied in terms of fluorescence emission measurement. The IE/IM was shown as a function of polymer concentration in deionized water. IE/IM value decreases with an increase in the salt concentration. The addition of surfactants to the aqueous solution of poly(DMAPS/Py) can either induce the mixed micelle of intra-polymer and its surrounding surfactants and/or mixed micelle of inter-polymers and their surrounding surfactants. Models of interactions between poly(DMAPS/Py) and surfactant or divalent salt in aqueous solution are proposed.  相似文献   

11.
The fluorescence of a series of copolymers of 2-naphthyl methacrylate (2-NM) and methyl methacrylate (MMA) with various contents of 2-NM (obtained in chloroform, carbon tetrachloride and acetonitrile) was investigated. A linear dependence between the ratio of the excimer to monomer emission intensities (ID/IM) and the diad fraction (fnn) of 2-NM monomer units was established. The relationship between ID/IM and fnn · In (In = the mean sequence length of 2-NM units) fits a logarithmic curve. The results indicate that the excimer emission is determined mainly by the nearest neighbour naphthalene-containing monomer units in the copolymer chain. The copolymers obtained in acetonitrile have higher values of ID/IM than those obtained in chloroform and carbon tetrachloride. This difference is due to the higher content of mm-triads in copolymers from acetonitrile, confirmed by 1H-NMR analysis of the samples of poly(methyl methacrylate) formed from copolymers of 2-NM and MMA.  相似文献   

12.
The interactions between copolymers of sodium styrene sulfonate (SSS) and N-isopropylacrylamide (NIPAM), anionic polyelectrolytes, and dodecyltrimethylammonium chloride (DTAC), a cationic surfactant, were studied in aqueous solutions of various ionic strengths. The copolymers were found to be thermoresponsive, showing a lower critical solution temperature (LCST). The influence of the polymer composition, the surfactant concentration, and the ionic strength on the LCST was studied. The surfactant was found to interact strongly with the polymer, forming mixed polymer-surfactant micelles. The critical aggregation concentration (cac) of the polymer-surfactant system was found from fluorescence spectroscopy using pyrene as a fluorescent probe. A strong dependence of the anionic polyelectrolyte-cationic surfactant interactions on the structure of the ionic comonomer was observed.  相似文献   

13.
The interactions of non-ionic amphiphilic diblock copolymer poly(oxyethylene/oxybutylene)(E39B18) with anionic surfactant sodium dodecyl sulphate(SDS) and cationic surfactant hexadecyltrimethylammonium bromide(CTAB) were studied by using various techniques such as surface tension,conductivity,steady-state fluorescence and dynamic light scattering.Surface tension measurements were used to determine the critical micelle concentration(CMC) and thereby the free energy of micellization(△Gmic),free energy of adsorption(△Gads),surface excess concentration(Γ) and minimum area per molecule(A).Conductivity measurements were used to determine the critical micelle concentration(CMC),critical aggregation concentration(CAC),polymer saturation point(PSP),degree of ionization(α) and counter ion binding(β). Dynamic light scattering experiments were performed to check the changes in physiochemical properties of the block copolymer micelles taken place due to the interactions of diblock copolymers with ionic surfactants.The ratio of the first and third vibronic peaks(I1/I3) indicated the polarity of the pyrene micro environment and was used for the detection of micelle as well as polymer-surfactant interactions.Aggregation number(N),number of binding sites(n) and free energy of binding (△Gb) for pure surfactants as well as for polymer-surfactant mixed micellar systems were determined by the fluorescence quenching method.  相似文献   

14.
The behavior of the triphenylmethane dye crystal violet in aqueous solutions containing polyoxyethylene nonionic surfactants was investigated using absorption and fluorescence spectroscopic techniques. The interactions of the dye were examined in micellar media in order to prevent dye aggregation and to ensure maximum dye and surfactant interaction. The relative fluorescence enhancements and the binding constants of the dye to the surfactant micelles were determined. The micropolarities of the micellar environment sensed by the pyrene probe were estimated from the I 1/I 3 intensity ratios of the fluorescence spectra of pyrene. The fluorescence quenching of pyrene by hexadecylpyridinium chloride was investigated in aqueous surfactant mixtures at a fixed concentration of surfactant in order to determine the aggregation numbers. Attempts were made to correlate the binding constants obtained in this investigation to various micellar parameters.  相似文献   

15.
The interaction of sodium dodecyl sulfate (SDS) in aqueous solution with poly(N-vinyl-2-pyrrolidone) (M(w) = 55,000 g/mol) in the presence of poly(ethylene glycol) (M(w) = 8000 g/mol) is investigated by electrical conductivity, zeta potential measurements, viscosity measurements, fluorescence spectroscopy, and small-angle X-ray scattering (SAXS). The results indicate that SDS-polymer interaction occurs at low surfactant concentration, and its critical aggregation concentration is fairly dependent on polymer composition. The polymer-supported micelles have average aggregation numbers dependent on surfactant concentration, are highly dissociated when compared with aqueous SDS micelles, and have zeta potentials that increase linearly with the fraction of PVP at constant SDS concentration. The analysis of the SAXS measurements indicated that the PVP/PEG/SDS system forms surface-charged aggregates of a cylindrical shape with an anisometry (length to cross-section dimension ratio) of about 3.0.  相似文献   

16.
Herein we report on the study of the interactions between alkanediyl-α,ω-type cationic dimeric (gemini) surfactant and the nonionic Triton X-100 in aqueous medium. The critical micelle concentrations of binary mixtures were determined by fluorometric study. Using the regular solution theory for the analysis of the experimental data, the attractive nature of interactions and synergistic behavior of gemini surfactant and Triton X-100 mixture were demonstrated. The micelle aggregation number was measured using steady state fluorescence quenching method. The micropolarity, binding constant and dielectric constant of mixed systems were determined from the ratio of peak’s intensity (I 1/I 3) in the pyrene fluorescence emission spectrum.  相似文献   

17.
Monomers, 1-pyrenylmethyl methacrylate (PyMMA), 1-pyrenylbutyl methacrylate (PyBMA), 4-(1-pyrenyl)methoxymethyl styrene (PyMMS) and allyl-(1-pyrenylmehtyl) ether (PyMAE), with pyrene as chromophore, were prepared. Their spectral properties (absorption, emission and emission decay) in solution, and doped or bonded in polymer matrices and complex polymer systems as interpenetrating polymer networks (IPN), were investigated. Spectral properties of pyrene-containing monomers doped in polystyrene (PS), polymethylmethacrylate (PMMA), polyvinylchloride (PVC), polyethylene (PE) and grafted on PE as well as copolymerized in buthylmethacrylate-co-styrene copolymer (BMA-co-S) have been compared. Absorption and emission spectra of pyrene type probes in solution and in IPN matrices exhibit typical absorption of the pyrene moiety. For IPN with grafted probes on PE, the absorption is slightly shifted to red wavelength. For monomers, PyMMA, PyBMA and PyMAE grafted to PE, the shape of the emission spectrum depends on the wavelength of excitation. The ratio of intensity of the vibrational band, I1/I3, (I1 peak at 377 nm and I3 peak at 388 nm) has been a quite useful indicator of polarity of IPN. The relative quantum yields of fluorescence in IPN matrices are lower in comparison to polymer matrices of PE, PS, PMMA for all probes under study. The fluorescence life-times for bound and free probes have been in the range 100–200 ns, which is substiantialy shorter than for the parent pyrene chromophore under the same or similar condition. Grafted probes on PE alone, or as a part of IPN, exhibit substantially shorter life-time around 10 ns and decay is rather complex.  相似文献   

18.
Summary: In this study sodium cholate (NaC) was used as a representative bile salt for the competitive binding between NaC and sodium dodecyl sulfate (SDS) in bovine serum albumin (BSA), in 0.02 M tris-HCl buffer solution at pH 7.50 and 25 °C. The NaC and SDS associations with BSA were monitored at low surfactant concentrations where only this specific binding process can develop. The applied method to monitor the binding was based on the analysis of the effect of SDS and NaC concentrations and their mixtures upon the fluorescence intensity of the BSA tryptophan residues. This consists of the measurement of the surfactant monomer partitioning between the dispersion medium and the microaggregates on the protein molecule where the binding is indicated by the quenching of the fluorescence chromophores. Experimentally, varying the protein concentration, the surfactant concentration needed to reach a given Io/I ratio (Io and I are the intensities with and without protein, respectively) was measured. The analyses, based on the average number of surfactant molecules bound on the protein, indicated that the SDS is a more efficient quencher than the bile salt. The need for 4–6 NaC bound molecules to give the same protein quenching efficiency by a single molecule of SDS was estimated. We concluded that the differences in the competitive binding on the protein are exclusively related to the quenching efficiency in the formation of the nonfluorescent fluorophore-quencher complex via a physical contact and static quenching process.  相似文献   

19.
The well‐defined azoindazole‐containing homopolymer, poly(6‐{6‐[(4‐dimethylamino) phenylazo]‐indazole}‐hexyl methacrylate) (PDHMA), and amphiphilic diblock copolymer, poly({6‐[6‐(4‐dimethylamino)phenylazo]‐indazole}‐hexyl methacrylate)‐b‐poly(2‐(dimethylamino)ethylmethacrylate) (PDHMAmb‐PDMAEMAn), were successfully prepared via reversible addition‐fragmentation chain transfer polymerization technique. The homopolymer and amphiphilic diblock copolymer in CH2Cl2 exhibited intense fluorescence emission accompanied by trans–cis photoisomerization of azoindazole group under UV irradiation. The experiment results indicated that the intense fluorescence emission may be attributed to an inhibition of photoinduced electron transfer of the cis form of azoindazole. On the other hand, the intense fluorescence emission of amphiphilic diblock copolymers in water‐tetrahydrofuran mixture was observed, which increased with the volume ratio of water in the mixed solvent. The self‐aggregation behaviors of three amphiphilic diblock copolymers were examined by transmission electron microscopy, laser light scattering, and UV–vis spectra. The restriction of intramolecular rotation of the azoindazole groups in aggregates was considered as the main cause of aggregation‐induced fluorescence emission. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

20.
《Thermochimica Acta》1987,112(1):123-130
Tg vs. composition studies on acrylic(methacrylic) copolymers of donor 2-(9-carbazolyl)ethyl acrylate(methacrylate) and of acceptor 2(3,5-dinitrobenzoyloxy)ethyl acrylate(methacrylate) have evidenced specific Tg vs. composition dependences. The acrylic(methacrylic) copolymers of the donor show always positive deviations from additivity of the Tg suggesting reduced mobility do to donor acceptor-like interactions. The Tg behaviour of the acceptor copolymers is much more complex showing an inversion from reduced to increased mobility of the copolymeric chain as the acceptor content is increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号