首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Temperature-responsive chromatography for the separation of biomolecules   总被引:2,自引:0,他引:2  
Temperature-responsive chromatography for the separation of biomolecules utilizing poly(N-isopropylacrylamide) (PNIPAAm) and its copolymer-modified stationary phase is performed with an aqueous mobile phase without using organic solvent. The surface properties and function of the stationary phase are controlled by external temperature changes without changing the mobile-phase composition. This analytical system is based on nonspecific adsorption by the reversible transition of a hydrophilic-hydrophobic PNIPAAm-grafted surface. The driving force for retention is hydrophobic interaction between the solute molecules and the hydrophobized polymer chains on the stationary phase surface. The separation of the biomolecules, such as nucleotides and proteins was achieved by a dual temperature- and pH-responsive chromatography system. The electrostatic and hydrophobic interactions could be modulated simultaneously with the temperature in an aqueous mobile phase, thus the separation system would have potential applications in the separation of biomolecules. Additionally, chromatographic matrices prepared by a surface-initiated atom transfer radical polymerization (ATRP) exhibit a strong interaction with analytes, because the polymerization procedure forms a densely packed polymer, called a polymer brush, on the surfaces. The copolymer brush grafted surfaces prepared by ATRP was an effective tool for separating basic biomolecules by modulating the electrostatic and hydrophobic interactions. Applications of thermally responsive columns for the separations of biomolecules are reviewed here.  相似文献   

2.
Inelastic neutron scattering experiments and molecular dynamics simulations have been used to investigate the low frequency modes, in the region between 0 and 100 meV, of hydration water in selected hydrophilic and hydrophobic biomolecules. The results show changes in the plasticity of the hydrogen-bond network of hydration water molecules depending on the biomolecular site. At 200 K, the measured low frequency density of states of hydration water molecules of hydrophilic peptides is remarkably similar to that of high density amorphous ice, whereas, for hydrophobic biomolecules, it is comparable to that of low density amorphous ice behavior. In both hydrophilic and hydrophobic biomolecules, the high frequency modes show a blue shift of the libration mode as compared to the room temperature data. These results can be related to the density of water molecules around the biological interface, suggesting that the apparent local density of water is larger in a hydrophilic environment.  相似文献   

3.
Functional interfaces of biomolecules and inorganic substrates like semiconductor materials are of utmost importance for the development of highly sensitive biosensors and microarray technology. However, there is still a lot of room for improving the techniques for immobilization of biomolecules, in particular nucleic acids and proteins. Conventional anchoring strategies rely on attaching biomacromolecules via complementary functional groups, appropriate bifunctional linker molecules, or non-covalent immobilization via electrostatic interactions. In this work, we demonstrate a facile, new, and general method for the reversible non-covalent attachment of amphiphilic DNA probes containing hydrophobic units attached to the nucleobases (lipid-DNA) onto SAM-modified gold electrodes, silicon semiconductor surfaces, and glass substrates. We show the anchoring of well-defined amounts of lipid-DNA onto the surface by insertion of their lipid tails into the hydrophobic monolayer structure. The surface coverage of DNA molecules can be conveniently controlled by modulating the initial concentration and incubation time. Further control over the DNA layer is afforded by the additional external stimulus of temperature. Heating the DNA-modified surfaces at temperatures >80 °C leads to the release of the lipid-DNA structures from the surface without harming the integrity of the hydrophobic SAMs. These supramolecular DNA layers can be further tuned by anchoring onto a mixed SAM containing hydrophobic molecules of different lengths, rather than a homogeneous SAM. Immobilization of lipid-DNA on such SAMs has revealed that the surface density of DNA probes is highly dependent on the composition of the surface layer and the structure of the lipid-DNA. The formation of the lipid-DNA sensing layers was monitored and characterized by numerous techniques including X-ray photoelectron spectroscopy, quartz crystal microbalance, ellipsometry, contact angle measurements, atomic force microscopy, and confocal fluorescence imaging. Finally, this new DNA modification strategy was applied for the sensing of target DNAs using silicon-nanowire field-effect transistor device arrays, showing a high degree of specificity toward the complementary DNA target, as well as single-base mismatch selectivity.  相似文献   

4.
A novel patterning method for anchoring biomolecules and noncovalent assembled conjugated polyelectrolyte (CPE)/biomolecule complexes to a chip surface is presented. The surface energy of a hydrophilic substrate is modified using an elastomeric poly(dimethylsiloxane) (PDMS) stamp, containing a relief pattern. Modification takes place on the parts where the PDMS stamp is in conformal contact with the substrate and leaves low molecular weight PDMS residues on the surface resulting in a hydrophobic modification, and then biomolecules and CPE/biomolecule complexes are then adsorbed in a specific pattern. The method constitutes a discrimination system for different conformations in biomolecules using CPEs as reporters and the PDMS modified substrates as the discriminator. Detection of different conformations in two biomacromolecules, a synthetic peptide (JR2E) and a protein (calmodulin), reported by the CPE and resolved by fluorescence was demonstrated. Also, excellent enzyme activity in patterned CPE/horseradish peroxidase (HRP) enzyme was shown, demonstrating that this method can be used to pattern biomolecules with their activity retained. The method presented could be useful in various biochip applications, such as analyzing proteins and peptides in large-scale production, in making metabolic chips, and for making multi-microarrays.  相似文献   

5.
Surface active gelatin derivative surfactants were formed by covalent attachment of hydrophobic groups to gelatin hydrolyzate molecules. The surface activity was evaluated by surface tension, wetting ability, emulsifying power and foaming properties. It was found that, the modified gelatins are more surface active than the gelatin hydrolyzate. The increase in hydrophobic chain length and the number of attached alkyl chains per gelatin hydrolyzate molecule leads to an increase in the surface activity. The modified gelatins also have high foaming ability and a high emulsifying ability, while the maximal surface activity is obtained by the C12 modified gelatin. The emulsification properties of the gelatin derivative surfactants were also compared to that of sodium dodecyl sulfate (SDS) and polyoxyethylene nonyl phenyl ether (NP-9), both emulsifying ability were equivalent to the C12 modified gelatin.  相似文献   

6.
High quality nanocrystals have demonstrated substantial potential for biomedical applications. However, being generally hydrophobic, their use has been greatly limited by complicated and inefficient surface engineering that often fails to yield biocompatible nanocrystals with minimal aggregation in biological fluids and active targeting toward specific biomolecules. Using chimeric DNA molecules, we developed a one-step facile surface engineering method for hydrophobic nanocrystals. The procedure is simple and versatile, generating individual nanocrystals with multiple ligands. In addition, the resulting nanocrystals can actively and specifically target various molecular addresses, varying from nucleic acids to cancer cells. Together, the strategy developed here holds great promise in generating critical technologies needed for biomedical applications of nanocrystals.  相似文献   

7.
The reactivity between two charged molecules and the activity of charged biomolecules are mainly governed by the principle of electrostatic interaction, i.e., like charges repel and opposite charges attract. In the present study it is shown that the principle of electrostatic interaction is violated in the nano-confined biomimetic environment. Thus a positively charged molecule shows more preference to a positively charged surface compared to a negatively charged surface.  相似文献   

8.
In this paper, a simple and green modification method is developed for biomolecules analysis on poly(dimethylsiloxane) (PDMS) microchip with successful depression of nonspecific biomolecules adsorption. O-[(N-succinimdyl)succiny]-o'-methyl-poly(ethylene glycol) was explored to form hydrophilic surface via in-situ grafting onto pre-coated chitosan (Chit) from aqueous solution in the PDMS microchannel. The polysaccharide chains backbone of Chit was strongly attracted onto the surface of PDMS via hydrophobic interaction combined with hydrogen bonding in an alkaline medium. The methyl-poly(ethylene glycol) (mPEG) could produce hydrophilic domains on the mPEG/aqueous interface, which generated brush-like coating in this way and revealed perfect resistance to nonspecific adsorption of biomolecules. This strategy could greatly improve separation efficiency and reproducibility of biomolecules. Amino acids and proteins could be efficiently separated and successfully detected on the coated microchip coupled with end-channel amperometric detection at a copper electrode. In addition, it offered an effective means for preparing biocompatible and hydrophilic surface on microfluidic devices, which may have potential use in the biological analysis.  相似文献   

9.
碳纳米管(CNTs)因具有独特的物理化学及电化学性质,如较大的比表面积、较强的电子转移能力和良好的吸附性能等而引起人们的广泛关注.碳纳米管可以通过物理吸附、静电或疏水作用等非共价结合方式或共价连接方式固定生物大分子(如蛋白质、DNA、抗体等),有效地促进生物大分子与电极间直接、快速的电子转移,可应用于多种电化学生物传感器中.碳纳米管本身在近红外光区具有独特的荧光和拉曼光谱,可以利用多种光谱手段对多种生物分子实现定量检测,因此近年来碳纳米管在光化学生物传感器中的应用也逐渐受到了研究者的重视.本文对碳纳米管在电化学和光化学生物传感器中的应用进行了简要综述和展望.  相似文献   

10.
The successful development of novel bio-inspired devices requires the ability to place specific biomolecules on a substrate with nanometre precision, in such a way so that their bioactivity is retained. A method is required that can verify this bio-modification. Scanning probe microscopy (SPM) can image and probe a surface in a liquid environment with nanometre resolution. Using short chain complementary oligonucleotides as the bioactive molecules we have modified continuous and patterned gold substrates and SPM probes. We demonstrated that the attached oligonucleotides retained their biological activity after surface attachment with a hybridization interaction force that varies between 50 and 400pN as measured by SPM force measurements. Finally, the position of the attached oligonucleotides was determined with nanometre resolution. Thus we have demonstrated the capabilities of SPM in the application of the development of substrates and templates suitable for forming the basis of novel and innovative devices.  相似文献   

11.

The surface activity, micelle formation, and solubilization ability towards hydrophobic compounds were estimated for the series of new cationic surfactants belonging to the type of 1-alkyl-1-(2-hydroxyethyl)pyrrolidinium bromides. The presence of 2-hydroxyethyl group in these surfactants leads to the twofold increase in their micelle-forming ability as compared to unsubstituted analogs. The critical micelle concentration for the investigated series of pyrrolidinium surfactants is lower at the same hydrophobicity than that for the analogs belonging to the alkylpyridinium, alkylimidazolium, and alkylmorpholinium types. The data acquired for the studied surfactants on their solubilization ability, antimicrobial activity, and hemolytic efficiency indicate their prospective applications to encapsulate hydrophobic biologically active molecules and as the promising bactericidal agents.

  相似文献   

12.
在微乳液介质中制备了系列的丙烯酰胺 (AM)与苯乙烯 (St)的双亲嵌段共聚物 (PAM b PSt) ,用紫外分光光度法测定了共聚物的组成 ,用乌氏粘度计测定了共聚物的特性粘数 [η],并用其相对表征共聚物的分子量大小 .重点研究了双亲嵌段共聚物 (PAM b PSt)疏水链段在水溶液中的缔合行为、共聚物的表面活性及其对有机物的增溶性能 ,考察了共聚物分子组成 (疏水链段含量 )与分子量对其表面活性与增溶性能的影响规律 .研究结果表明 ,由于疏水链段的憎水性 ,PAM b PSt的分子链在水溶液表面会形成表面吸附 ,从而降低水溶液的表面张力 ;而在水溶液中 ,在疏水相互作用下 ,PAM b PSt分子链中的苯乙烯疏水链段会形成分子间或分子内的胶束 ,烃类有机物可增溶其中 ;疏水链段含量越大 ,分子量越小 ,PAM b PSt的表面活性与增溶性能越强  相似文献   

13.
After a soft ionizing method was established, MS (mass spectrometry) has become a more common tool in biochemistry because soft ionization made it possible to detect large molecules such as proteins. Many kinds of applications were established to further utilize MS for the identification or quantitation of biomolecules. In this review, we introduce recent applications with special focus on chemical modification techniques and chemical probes developed for the MS determination of biomolecules.  相似文献   

14.
Polysulfone/poly(ethylene glycol) amphiphilic networks were prepared via in situ photo-induced free radical crosslinking polymerization. First, the hydrophobic polysulfone diacrylate (PSU-DA) oligomer was synthesized by condensation polymerization and subsequent esterification processes. Then, the obtained oligomer was co-crosslinked with the hydrophilic poly(ethylene glycol) diacrylate (PEG-DA) or poly(ethylene glycol) methyl ether acrylate (PEG-MA) at different feed ratios. In the case of PEG-MA, the resulting network possessed dangling pendant hydrophilic chains on the crosslinked surface. The structure and the morphology of the membranes were characterized by attenuated total reflection infrared spectroscopy (ATR-IR) and scanning electron microscopy (SEM). The enhancement of surface hydrophilicity was investigated by water contact angle measurements. The biomolecule adsorption properties of these networks were also studied. The biomolecules easily adsorbed on the surface of the hydrophobic polysulfone networks whereas dangling hydrophilic chains on the surface prevented the adsorption of the biomolecules.  相似文献   

15.
Control of surface properties in microfluidic systems is an indispensable prerequisite for successful bioanalytical applications. Poly(dimethylsiloxane) (PDMS) microfluidic devices are hampered from unwanted adsorption of biomolecules and lack of methods to control electroosmotic flow (EOF). In this paper, we propose different strategies to coat PDMS surfaces with poly(oxyethylene) (POE) molecules of varying chain lengths. The native PDMS surface is pretreated by exposure to UV irradiation or to an oxygen plasma, and the covalent linkage of POE-silanes as well as physical adsorption of a triblock-copolymer (F108) are studied. Contact angle measurements and atomic force microscopy (AFM) imaging revealed homogeneous attachment of POE-silanes and F108 to the PDMS surfaces. In the case of F108, different adsorption mechanisms to hydrophilic and hydrophobic PDMS are discussed. Determination of the electroosmotic mobilities of these coatings in PDMS microchannels prove their use for electrokinetic applications in which EOF reduction is inevitable and protein adsorption has to be suppressed.  相似文献   

16.
Protein and surfactant modified air–water interfaces are an important model system for colloid science as many applications for example aqueous foams in food products rely on our knowledge and ability to tune molecular structures at these interfaces. That is because interfaces are a fundamental building block in the hierarchical structure of foam, where in fact the molecular level can determine properties on larger length scales. For that reason it is of great importance to increase our ability to study air–water interfaces with molecular level probes and to obtain not only information on coverage but also direct information on interfacial composition, molecular order, orientations as well as information on the charged state of an interface. Vibrational sum-frequency generation (SFG) is a powerful tool that can help to address these issues and is inherently surface sensitive. In this contribution we will review recent developments in the use of SFG for studies of biomolecules at aqueous interfaces and discuss current issues with the interpretation of SFG spectra from electrified interfaces. In order to guide interpretations from interface spectroscopy we invoke the use of complementary methods such as ellipsometry and zetapotential measurements of bulk molecules.  相似文献   

17.
Microscale plasma-initiated patterning (μPIP) is a novel micropatterning technique used to create biomolecular micropatterns on polymer surfaces. The patterning method uses a polydimethylsiloxane (PDMS) stamp to selectively protect regions of an underlying substrate from oxygen plasma treatment resulting in hydrophobic and hydrophilic regions. Preferential adsorption of the biomolecules onto either the plasma-exposed (hydrophilic) or plasma-protected (hydrophobic) regions leads to the biomolecular micropatterns. In the current work, laminin-1 was applied to an electrospun polyamide nanofibrillar matrix following plasma treatment. Radial glial clones (neural precursors) selectively adhered to these patterned matrices following the contours of proteins on the surface. This work demonstrates that textured surfaces, such as nanofibrillar scaffolds, can be micropatterned to provide external chemical cues for cellular organization.  相似文献   

18.
Cu-free "click" chemistry is explored on silicon nitride (Si(3)N(4)) surfaces as an effective way for oriented immobilization of biomolecules. An ω-unsaturated ester was grafted onto Si(3)N(4) using UV irradiation. Hydrolysis followed by carbodiimide-mediated activation yielded surface-bound active succinimidyl and pentafluorophenyl ester groups. These reactive surfaces were employed for the attachment of bicyclononyne with an amine spacer, which subsequently enabled room temperature strain-promoted azide-alkyne cycloaddition (SPAAC). This stepwise approach was characterized by means of static water contact angle, X-ray photoelectron spectroscopy, and fluorescence microscopy. The surface-bound SPAAC reaction was studied with both a fluorine-tagged azide and an azide-linked lactose, yielding hydrophobic and bioactive surfaces for which the presence of trace amounts of Cu ions would have been problematic. Additionally, patterning of the Si(3)N(4) surface using this metal-free click reaction with a fluorescent azide is shown. These results demonstrate the ability of the SPAAC as a generic tool for anchoring complex molecules onto a surface under extremely mild, namely ambient and metal-free, conditions in a clean and relatively fast manner.  相似文献   

19.
We have investigated a new method for HPLC using packing materials modified with a functional polymer, such as thermoresponsive poly(N-isopropylacrylamide) (PNIPAAm). PNIPAAm-modified silica exhibits temperature-controlled hydrophilic-hydrophobic surface property changes in aqueous systems. Temperature-responsive chromatography is performed with an aqueous mobile phase without using an organic solvent. We designed ternary copolymers of NIPAAm introduced 2-(dimethyl-amino) ethyl methacrylate (DMAEMA) as a cationic monomer and butyl methacrylate (BMA) as a hydrophobic monomer. A cationic thermoresponsive hydrogel grafted surface would produce an alterable stationary phase with both thermally regulated hydrophobicity and charge density for separation of bioactive compounds. In this study, we achieved successful separation of lysozyme without the loss of bioactivity by temperature-responsive chromatography. The electrostatic and hydrophobic interactions could be modulated simultaneously with the temperature in an aqueous mobile phase, thus the separation system would have potential applications in the separation of biomolecules.  相似文献   

20.
Silanol groups on a silica surface affect the activity of immobilized catalysts because they can influence the hydrophilicity/hydrophobicity, matter transfer, or even transition state in a catalytic reaction. Previously, these silanol groups have usually been passivated by using surface‐passivation reagents, such as alkoxysilanes, bis‐silylamine reagents, chlorosilanes, etc., and surface passivation has typically been found in mesoporous‐silicas‐supported molecular catalysts and heteroatomic catalysts. However, this property has rarely been reported in mesoporous‐silicas‐supported metal‐nanoparticle catalysts. Herein, we prepared an almost‐superhydrophobic SBA‐15‐supported gold‐nanoparticle catalyst by using surface passivation, in which the catalytic activity increased more than 14 times for the reduction of nitrobenzene compared with non‐passivated SBA‐15. In addition, this catalyst can selectively catalyze hydrophobic molecules under our experimental conditions, owing to its high (almost superhydrophobic) hydrophobic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号