首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
《代数通讯》2013,41(12):4785-4794
Abstract

Let ω(G) denote the number of orbits on the finite group G under the action of Aut(G). Using the classification of finite simple groups, we prove that for any positive integer n, there is only a finite number of (non-abelian) finite simple groups G satisfying ω(G) ≤ n. Then we classify all finite simple groups G such that ω(G) ≤ 17. The latter result was obtained by computational means, using the computer algebra system GAP.  相似文献   

2.
We consider the graph Γ(G), associated with the conjugacy classes of a group G. Its vertices are the nontrivial conjugacy classes of G, and we join two different classes C, D, whenever there exist x ∈ G and y ∈ D such that xy = yx. The aim of this article is twofold. First, we investigate which graphs can occur in various contexts and second, given a graph Γ(G) associated with G, we investigate the possible structure of G. We proved that if G is a periodic solvable group, then Γ(G) has at most two components, each of diameter at most 9. If G is any locally finite group, then Γ(G) has at most 6 components, each of diameter at most 19. Finally, we investigated periodic groups G with Γ(G) satisfying one of the following properties: (i) no edges exist between noncentral conjugacy classes, and (ii) no edges exist between infinite conjugacy classes. In particular, we showed that the only nonabelian groups satisfying (i) are the three finite groups of order 6 and 8.  相似文献   

3.
Mark L. Lewis 《代数通讯》2013,41(4):1273-1292
A finite group G is odd-square-free if no irreducible complex character of G has degree divisible by the square of an odd prime. We determine all odd-square-free groups G satisfying S ≤ G ≤ Aut(S) for a finite simple group S. More generally, we show that if G is any nonsolvable odd-square-free group, then G has at most two nonabelian chief factors and these must be simple odd-square-free groups. If the alternating group A 7 is involved in G, the structure of G can be further restricted.  相似文献   

4.
《代数通讯》2013,41(7):3287-3293
Abstract

For an element a of a group G,let S(a) denote the semigroup generated by all conjugates of a in G. We prove that if G is solvable of finite rank and 1 ? S(a) for all 1 ≠ a ∈ G,then ?a G ?/?b G ? is a periodic group for every b ∈ S(a). Conversely if every two generator subgroup of a finitely generated torsion-free solvable group G has this property then G has finite rank,and if every finitely generated subgroup has this property then every partial order on G can be extended to a total order.  相似文献   

5.
Yong Yang 《代数通讯》2013,41(2):565-574
Suppose that V is a finite faithful irreducible G-module where G is a finite solvable group of odd order. We prove if the action is quasi-primitive, then either F(G) is abelian or G has at least 212 regular orbits on V. As an application, we prove that when V is a finite faithful completely reducible G-module for a solvable group G of odd order, then there exists v ∈ V such that C G (v) ? F 2(G) (where F 2(G) is the 2nd ascending Fitting subgroup of G). We also generalize a result of Espuelas and Navarro. Let G be a group of odd order and let H be a Hall π-subgroup of G. Let V be a faithful G-module over a finite field of characteristic 2, then there exists v ∈ V such that C H (v) ? O π(G).  相似文献   

6.
Let G be a finite group and cd(G) be the set of irreducible character degrees of G. Bertram Huppert conjectured that if H is a finite nonabelian simple group such that cd(G) = cd(H), then G ? H × A, where A is an abelian group. We examine arguments to verify this conjecture for the simple groups of Lie type of rank two. To illustrate our arguments, we extend Huppert's results and verify the conjecture for the simple linear and unitary groups of rank two.  相似文献   

7.
We associate a graph Γ G to a nonlocally cyclic group G (called the noncyclic graph of G) as follows: take G\ Cyc(G) as vertex set, where Cyc(G) = {x ? G| 〈x, y〉 is cyclic for all y ? G}, and join two vertices if they do not generate a cyclic subgroup. We study the properties of this graph and we establish some graph theoretical properties (such as regularity) of this graph in terms of the group ones. We prove that the clique number of Γ G is finite if and only if Γ G has no infinite clique. We prove that if G is a finite nilpotent group and H is a group with Γ G  ? Γ H and |Cyc(G)| = |Cyc(H)| = 1, then H is a finite nilpotent group. We give some examples of groups G whose noncyclic graphs are “unique”, i.e., if Γ G  ? Γ H for some group H, then G ? H. In view of these examples, we conjecture that every finite nonabelian simple group has a unique noncyclic graph. Also we give some examples of finite noncyclic groups G with the property that if Γ G  ? Γ H for some group H, then |G| = |H|. These suggest the question whether the latter property holds for all finite noncyclic groups.  相似文献   

8.
Bijan Taeri 《代数通讯》2013,41(3):894-922
Let n be an integer greater than 1. A group G is said to be n-rewritable whenever for every n elements x 1,…,x n of G, there exist distinct permutations τ, σ on the set {1,2,…, n} such that x τ(1) ··· x τ(n) = x σ (1) ··· x σ (n). In this article, we complete the classification of 3-rewritable finite nilpotent groups and prove that a finite nilpotent group G is 3-rewritable if and only if G has an abelian subgroup of index 2 or the derived subgroup has order < 6.  相似文献   

9.
《代数通讯》2013,41(7):2201-2217
ABSTRACT

Michio Suzuki constructed a sequence of five simple groups G i , with i = 0,…, 4, and five graphs Δ i , with i = 0,…, 4, such that Δ i appears as a subgraph of Δ i+1 for i = 0,…, 3 and G i is an automorphism group of Δ i for i = 0,…, 4. The largest group G 4 was a new sporadic group of order 448 345 497 600. It is now called the Suzuki group Suz. These groups and graphs form what Jacques Tits calls the Suzuki tower. In a previous work, we constructed a rank four geometry Γ(HJ) on which the Hall-Janko sporadic simple group acts flag-transitively and residually weakly primitively. In this article, we show that Γ(HJ) belongs to a family of five geometries in bijection with the Suzuki tower. The largest of them is a geometry of rank six, on which the Suzuki sporadic group acts flag-transitively and residually weakly primitively.  相似文献   

10.
S. Akbari  D. Kiani  F. Ramezani 《代数通讯》2013,41(9):3532-3538
The commuting graph of a ring R, denoted by Γ(R), is a graph of all whose vertices are noncentral elements of R, and 2 distinct vertices x and y are adjacent if and only if xy = yx. In this article we investigate some graph-theoretic properties of Γ(kG), where G is a finite group, k is a field, and 0 ≠ |G| ∈k. Among other results it is shown that if G is a finite nonabelian group and k is an algebraically closed field, then Γ(kG) is not connected if and only if |G| = 6 or 8. For an arbitrary field k, we prove that Γ(kG) is connected if G is a nonabelian finite simple group or G′ ≠ G″ and G″ ≠ 1.  相似文献   

11.
Yongcai Ren 《代数通讯》2013,41(6):2635-2644
Let G be a finite group. We put ρ(G) = {p|p is a prime dividing χ(1) for some χ ∈Irr(G)}. We define a graph Γ(G), whose vertices are the primes in ρ(G) and p, q ∈ ρ(G) are connected in Γ(G) denoted p ~ q, if pq||χ(1) for some χ ∈Irr(G). For p ∈ ρ(G), we define ord(p) = |{q ∈ ρ(G)|q ~ p}|. We call ord(p) the order of the vertex p of the graph Γ(G). In this article, we discuss orders and the influences of orders on the structure of finite groups.  相似文献   

12.
《代数通讯》2013,41(9):3641-3649
Abstract

Let G be a finite group and let cd(G) be the set of irreducible character degrees of G. The degree graph Δ(G) of G is the graph whose set of vertices is the set of primes that divide degrees in cd(G), with an edge between p and q if pq divides a for some degree a ∈ cd(G). In this paper, we determine the graph Δ(G) when G is a finite simple group of exceptional Lie type.  相似文献   

13.
Let G be a non-abelian group and Z(G) be the center of G. Associate a graph Γ G (called noncommuting graph of G) with G as follows: Take G?Z(G) as the vertices of Γ G , and join two distinct vertices x and y, whenever xy ≠ yx. Here, we prove that “the commutativity pattern of a finite non-abelian p-group determine its order among the class of groups"; this means that if P is a finite non-abelian p-group such that Γ P  ? Γ H for some group H, then |P| = |H|.  相似文献   

14.
Frieder Ladisch 《代数通讯》2013,41(8):2883-2894
We study finite groups G with elements g such that |C G (g)| = |G:G′|. (Such elements generalize fixed-point-free automorphisms of finite groups.) We show that these groups have a unique conjugacy class of nilpotent supplements for the commutator subgroup and, using the classification of finite simple groups, that these groups are solvable.  相似文献   

15.
Denote by ω(G) the number of orbits of the action of Aut(G) on the finite group G. We prove that if G is a finite nonsolvable group in which ω(G) ≤5, then G is isomorphic to one of the groups A5, A6, PSL(2, 7), or PSL(2, 8). We also consider the case when ω(G) = 6 and show that, if G is a nonsolvable finite group with ω(G) = 6, then either GPSL(3, 4) or there exists a characteristic elementary abelian 2-subgroup N of G such that G/NA5.  相似文献   

16.
Donald L. White 《代数通讯》2013,41(8):2907-2921
Let G be a finite group and let cd (G) be the set of irreducible character degrees of G. The degree graph Δ(G) is the graph whose set of vertices is the set of primes that divide degrees in cd (G), with an edge between p and q if pq divides a for some degree a ? cd (G). We determine the graph Δ(G) for the finite simple groups of types A ?(q) and 2 A ? (q 2), that is, for the simple linear and unitary groups.  相似文献   

17.
In Tong-Viet's, 2012 work, the following question arose: Question. Which groups can be uniquely determined by the structure of their complex group algebras?

It is proved here that some simple groups of Lie type are determined by the structure of their complex group algebras. Let p be an odd prime number and S = PSL(2, p 2). In this paper, we prove that, if M is a finite group such that S < M < Aut(S), M = ?2 × PSL(2, p 2) or M = SL(2, p 2), then M is uniquely determined by its order and some information about its character degrees. Let X 1(G) be the set of all irreducible complex character degrees of G counting multiplicities. As a consequence of our results, we prove that, if G is a finite group such that X 1(G) = X 1(M), then G ? M. This implies that M is uniquely determined by the structure of its complex group algebra.  相似文献   

18.
A permutation group G ≤ Sym(X) on a finite set X is sharp if |G|=∏ l?L(G)(|X| ? l), where L(G) = {|fix(g)| | 1 ≠ g ? G}. We show that no finite primitive permutation groups of twisted wreath type are sharp.  相似文献   

19.
Wei Meng 《代数通讯》2013,41(3):909-915
Let G be a finite group and τ(G) denote the number of conjugacy classes of all non-abelian subgroups of G. The symbol π(G) denotes the set of the prime divisors of |G|. In this paper, finite groups with τ(G) ≤ |π(G)| are classified completely. Furthermore, finite nonsolvable groups with τ(G) = |π(G)| +1 are determined.  相似文献   

20.
Let G be a group and Aut(G) be the group of automorphisms of G. Then the Acentralizer of an automorphism α ∈Aut(G) in G is defined as C G (α) = {g ∈ G∣α(g) = g}. For a finite group G, let Acent(G) = {C G (α)∣α ∈Aut(G)}. Then for any natural number n, we say that G is n-Acentralizer group if |Acent(G)| =n. We show that for any natural number n, there exists a finite n-Acentralizer group and determine the structure of finite n-Acentralizer groups for n ≤ 5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号