首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hongdi Huang 《代数通讯》2013,41(2):568-590
A group G is said to be a B(n, k) group if for any n-element subset A of G, |A2| ≤k. In this paper, a characterization of B(5, 18) groups is given. It is shown that G is a B(5, 18) group if and only if one of the following statements holds: (1) G is abelian; (2) |G| ≤18; (3) G ? ? a, b | a5 = b4 = 1, ab = a?1 ?.  相似文献   

2.
Donald L. White 《代数通讯》2013,41(8):2907-2921
Let G be a finite group and let cd (G) be the set of irreducible character degrees of G. The degree graph Δ(G) is the graph whose set of vertices is the set of primes that divide degrees in cd (G), with an edge between p and q if pq divides a for some degree a ? cd (G). We determine the graph Δ(G) for the finite simple groups of types A ?(q) and 2 A ? (q 2), that is, for the simple linear and unitary groups.  相似文献   

3.
Let G be a finite group and cs(G) be the set of conjugacy class sizes of G. In 1987, J. G. Thompson conjectured that, if G is a finite group with Z(G) = 1 and M is a nonabelian simple group satisfying that cs(G) = cs(M), then G ? M. This conjecture has been proved for Suzuki groups in [5 Guiyun, C. (1996). On Thompson's conjecture. J. Algebra 185(1):184193.[Crossref], [Web of Science ®] [Google Scholar]]. In this article, we improve this result by proving that, if G is a finite group such that cs(G) = cs(Sz(q)), for q = 22m+1, then G ? Sz(q) × A, where A is abelian. We avoid using classification of finite simple groups in our proofs.  相似文献   

4.
N. Ahanjideh  M. Ahanjideh 《代数通讯》2013,41(11):4116-4145
In this article, we prove a conjecture of J. G. Thompson for the finite simple group 2 D n (q). More precisely, we show that every finite group G with the property Z(G) = 1 and N(G) = N(2 D n (q)) is necessarily isomorphic to 2 D n (q). Note that N(G) is the set of lengths of conjugacy classes of G.  相似文献   

5.
《代数通讯》2013,41(3):1229-1235
Abstract

Groups G of the form G = AB = AM = BM for two subgroups A and B of G and a normal subgroup M of G with A ∩ M = B ∩ M = 1 are called triply factorized and play an important rôle in the theory of factorized groups. In this paper, a method to construct triply factorized groups with non-abelian M using local near-rings is introduced.  相似文献   

6.
Denote by ω(G) the number of orbits of the action of Aut(G) on the finite group G. We prove that if G is a finite nonsolvable group in which ω(G) ≤5, then G is isomorphic to one of the groups A5, A6, PSL(2, 7), or PSL(2, 8). We also consider the case when ω(G) = 6 and show that, if G is a nonsolvable finite group with ω(G) = 6, then either GPSL(3, 4) or there exists a characteristic elementary abelian 2-subgroup N of G such that G/NA5.  相似文献   

7.
George Szeto 《代数通讯》2013,41(12):3979-3985
Let B be a Galois algebra over a commutative ring R with Galois group G such that B H is a separable subalgebra of B for each subgroup H of G. Then it is shown that B satisfies the fundamental theorem if and only if B is one of the following three types: (1) B is an indecomposable commutative Galois algebra, (2) B = Re ⊕ R(1 ? e) where e and 1 ? e are minimal central idempotents in B, and (3) B is an indecomposable Galois algebra such that for each separable subalgebra A, V B (A) = ?∑ gG(A) J g , and the centers of A and B G(A) are the same where V B (A) is the commutator subring of A in B, J g  = {b ∈ B | bx = g(x)b for each x ∈ B} for a g ∈ G, and G(A) = {g ∈ G | g(a) = a for all a ∈ A}.  相似文献   

8.
9.
A permutation group G ≤ Sym(X) on a finite set X is sharp if |G|=∏ l?L(G)(|X| ? l), where L(G) = {|fix(g)| | 1 ≠ g ? G}. We show that no finite primitive permutation groups of twisted wreath type are sharp.  相似文献   

10.
David I. Stewart 《代数通讯》2013,41(12):4702-4716
Let G be the simple, simply connected algebraic group SL 3 defined over an algebraically closed field K of characteristic p > 0. In this article, we find H 2(G, V) for any irreducible G-module V. When p > 7, we also find H 2(G(q), V) for any irreducible G(q)-module V for the finite Chevalley groups G(q) = SL(3, q) where q is a power of p.  相似文献   

11.
《代数通讯》2013,41(5):2357-2379
Abstract

Restrictions of irreducible representations of classical algebraic groups to root A 1-subgroups, i.e., subgroups of type A 1 generated by root subgroups associated with two opposite roots, are studied. Composition factors of such restrictions are found in the following cases: for groups of types A n with n > 2 and D n , for groups of type B n , n > 2, and long root subgroups, for groups of type C n , n > 2, and short root subgroups, and for p-restricted representations of A 2(K), C 2(K) (recall that B 2(K) ? C 2(K)), and of B n (K), n > 2, and short root subgroups. Here we assume that p > 2 for G = B n (K) or C n (K).  相似文献   

12.
LetG be a finite group andA andB solvable subgroups ofG, such thatG=AB and 2 is the only common prime divisor ofA andB. Under suitable restrictions of the 2-structure ofA andB, it is shown that eitherG is solvable orG contains a solvable normal subgroupN, such thatG/N contains a normal subgroup, which is isomorphic to PGL(2,q),q odd.  相似文献   

13.
Hanna Neumann asked whether it was possible for two non-isomorphic residually nilpotent finitely generated (fg) groups, one of them free, to share the lower central sequence. Baumslag answered the question in the affirmative and thus gave rise to parafree groups. A group G is termed parafree of rank n if it is residually nilpotent and shares the same lower central sequence with a free group of rank n. The deviation of a fg parafree group G of rank n is the difference μ(G) ? n, where μ(G) is the minimum possible number of generators of G.

Let G be fg; then Hom(G, SL 2?) inherits the structure of an algebraic variety, denoted by R(G). If G is an n generated parafree group, then the deviation of G is 0 iff Dim(R(G)) = 3n. It is known that for n ≥ 2 there exist infinitely many parafree groups of rank n and deviation 1 with non-isomorphic representation varieties of dimension 3n. In this paper it is shown that given integers n ≥ 2 and k ≥ 1, there exists infinitely many parafree groups of rank n and deviation k with non-isomorphic representation varieties of dimension different from 3n; in particular, there exist infinitely many parafree groups G of rank n with Dim(R(G)) > q, where q ≥ 3n is an arbitrary integer.  相似文献   

14.
M. Asaad 《代数通讯》2013,41(11):4217-4224
Let G be a finite group. A subgroup K of a group G is called an ?-subgroup of G if N G (K) ∩ K x  ≦ K for all x ? G. The set of all ?-subgroups of G will be denoted by ?(G). Let P be a nontrivial p-group. A chain of subgroups 1 = P 0 ? P 1 ? ··· ? P n  = P is called a maximal chain of P provided that |P i : P i?1| = p, i = 1, 2, ···, n. A nontrivial p-subgroup P of G is called weakly supersolvably embedded in G if P has a maximal chain 1 = P 0 ? P 1 ? ··· ? P i  ? ··· ? P n  = P such that P i  ? ?(G) for i = 1, 2, ···, n. Using the concept of weakly supersolvably embedded, we obtain new characterizations of p-nilpotent and supersolvable finite groups.  相似文献   

15.
M. Asaad 《代数通讯》2013,41(3):1034-1040
Let G be a finite group. A subgroup H of a group G is said to be c-supplemented in G if there exists a subgroup K of G such that G = HK and H ∩ K ≤ H G , where H G  = Core G (H) is the largest normal subgroup of G contained in H. In this article, we investigate the structure of a finite group G under the assumption that subgroups of prime order are c-supplemented in G. Moreover, we analyze the structure of a group G when the minimal subgroups of the generalized Fitting subgroup F?(G) of G are c-supplemented in G through the theory of formations.  相似文献   

16.
In this article we prove that a set of points B of PG(n, 2) is a minimal blocking set if and only if ?B? = PG(d, 2) with d odd and B is a set of d + 2 points of PG(d, 2) no d + 1 of them in the same hyperplane. As a corollary to the latter result we show that if G is a finite 2-group and n is a positive integer, then G admits a ? n+1-cover if and only if n is even and G? (C 2) n , where by a ? m -cover for a group H we mean a set 𝒞 of size m of maximal subgroups of H whose set-theoretic union is the whole H and no proper subset of 𝒞 has the latter property and the intersection of the maximal subgroups is core-free. Also for all n < 10 we find all pairs (m,p) (m > 0 an integer and p a prime number) for which there is a blocking set B of size n in PG(m,p) such that ?B? = PG(m,p).  相似文献   

17.
John D. Bradley 《代数通讯》2013,41(8):3245-3258
Let U = U(q) be a Sylow p-subgroup of a finite Chevalley group G = G(q). Röhrle and Goodwin in 2009 determined a parameterization of the conjugacy classes of U, for G of small rank when q is a power of a good prime for G. As a consequence they verified that the number k(U) of conjugacy classes of U is given by a polynomial in q with integer coefficients. In the present paper, we consider the case when p is a bad prime for G. Our motivation is to observe how the situation differs between good and bad characteristics. We obtain a parameterization of the conjugacy classes of U, when G has rank less than or equal to 4, and G is not of type F 4. In these cases we deduce that k(U) is given by a polynomial in q with integer coefficients; this polynomial is different from the polynomial for good primes.  相似文献   

18.
Let G be a group and Aut(G) be the group of automorphisms of G. Then the Acentralizer of an automorphism α ∈Aut(G) in G is defined as C G (α) = {g ∈ G∣α(g) = g}. For a finite group G, let Acent(G) = {C G (α)∣α ∈Aut(G)}. Then for any natural number n, we say that G is n-Acentralizer group if |Acent(G)| =n. We show that for any natural number n, there exists a finite n-Acentralizer group and determine the structure of finite n-Acentralizer groups for n ≤ 5.  相似文献   

19.
Jiakuan Lu  Wei Meng 《代数通讯》2013,41(5):1752-1756
For a finite group G, let v(G) denote the number of conjugacy classes of non-normal subgroups of G and vc(G) denote the number of conjugacy classes of non-normal noncyclic subgroups of G. In this paper, we show that every finite group G satisfying v(G) ≤2|π(G)| or vc(G) ≤ |π(G)| is solvable, and for a finite nonsolvable group G, v(G) = 2|π(G)| +1 if and only if G ? A 5.  相似文献   

20.
Let G be a finite group and cd(G) be the set of irreducible character degrees of G. Bertram Huppert conjectured that if H is a finite nonabelian simple group such that cd(G) = cd(H), then G ? H × A, where A is an abelian group. We examine arguments to verify this conjecture for the simple groups of Lie type of rank two. To illustrate our arguments, we extend Huppert's results and verify the conjecture for the simple linear and unitary groups of rank two.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号