首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complex formation between N,N,N′,N′‐tetrakis(2‐aminoethyl)ethane‐1,2‐diamine (penten) and the metal ions Mn2+, Co2+, Cu2+, Zn2+, Cd2+, Hg2+, Ag+, Pb2+, and Tl3+ (in 1.00M NaNO3 and 25°) was investigated by potentiometry and spectrophotometry. These are the first reported values of the stability constants for this ligand with Ag+, Pb2+, and Tl3+. The X‐ray crystal structure of [Tl(NO3)(penten)](NO3)2 was determined. In this structure, Tl3+ shows a coordination number of seven made up of the six N‐donors and one O‐atom of NO.  相似文献   

2.
Crystallization of N,N′‐dimethylpyrazinediium bis(tetrafluoroborate), C6H10N22+·2BF4, (I), and N,N′‐diethylpyrazinediium bis(tetrafluoroborate), C8H14N22+·2BF4, (II), from dried acetonitrile under argon protection has permitted their single‐crystal studies. In both crystal structures, the pyrazinediium dications are located about an inversion center (located at the ring center) and each pyrazinediium aromatic ring is π‐bonded to two centrosymmetrically related BF4 anions. Strong anion–π interactions, as well as weak C—H...F hydrogen bonds, between BF4 and pyrazinediium ions are present in both salts.  相似文献   

3.
Chelate Formation of N-Tris(2-aminoethyl)amine-N′,N′,N″,N″,N?,N?-hexaacetic Acid (H6TTAHA) and N-(Pyrid-2-yl-methyl)ethylenediamine-N,N′,N′-triacetic Acid (H3PEDTA) with Gadolinium(III) – Syntheses, Stability Constants, and NMR-Relaxivities The chelate formation of N-tris(2-aminoethyl)amine-N′,N′,N″,N″,N?,N?-hexaacetic acid (H6TTAHA) and N-(pyrid-2-yl-methyl)ethylenediamine-N,N′,N′-triacetic acid (H3PEDTA) with gadolinium(III) has been studied potentiometrically in aqueous solution at 25°C and μ = 0.1 (KCl). [Gd(TTAHA)]3?: 1gβM/ML = 19.0; {H[Gd(TTAHA)]}2?: 1gKH/MHL = 8.30; [Gd(PEDTA)]: 1gβM/ML = 15.56. Both 1 : 1 gadolinium(III) complexes were isolated as Na2H[Gd(C18H24N4O12)] · 3.5 H2O and [Gd(C14H16N3O6)] · 3 H2O, respectively. Their 1H-NMR relaxivities [1 · mmol?1 · s?1] ({H[Gd(TTAHA)]}2?: 9.5; [Gd(PEDTA)]: 8.8) offer promising applications for 1H-NMR imaging.  相似文献   

4.
In the title compound, [Co(C2H6NS)(C2H8N2)2](NO3)2, the CoIII atom has a slightly distorted octahedral geometry, coordinated by one 2‐amino­ethane­thiol­ate and two ethyl­enedi­amine ligands. The three five‐membered chelate rings adopt a gauche conformation with the unfavoured (lel)2(ob) form, which is ascribed to hydrogen bonds between the amine groups in the complex cation and the nitrate counter‐anions [N?O 2.900 (3)–3.378 (3) Å].  相似文献   

5.
Eu3+, Dy3+, and Yb3+ complexes of the dota‐derived tetramide N,N′,N″,N′′′‐[1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetrayltetrakis(1‐oxoethane‐2,1‐diyl)]tetrakis[glycine] (H4dotagl) are potential CEST contrast agents in MRI. In the [Ln(dotagl)] complexes, the Ln3+ ion is in the cage formed by the four ring N‐atoms and the amide O‐atom donor atoms, and a H2O molecule occupies the ninth coordination site. The stability constants of the [Ln(dotagl)] complexes are ca. 10 orders of magnitude lower than those of the [Ln(dota)] analogues (H4dota=1,4,7,10‐tetraazacyclododecane‐1,4,7,10‐tetraacetic acid). The free carboxylate groups in [Ln(dotagl)] are protonated in the pH range 1–5, resulting in mono‐, di‐, tri‐, and tetraprotonated species. Complexes with divalent metals (Mg2+, Ca2+, and Cu2+) are also of relatively low stability. At pH>8, Cu2+ forms a hydroxo complex; however, the amide H‐atom(s) does not dissociate due to the absence of anchor N‐atom(s), which is the result of the rigid structure of the ring. The relaxivities of [Gd(dotagl)] decrease from 10 to 25°, then increase between 30–50°. This unusual trend is interpreted with the low H2O‐exchange rate. The [Ln(dotagl)] complexes form slowly, via the equilibrium formation of a monoprotonated intermediate, which deprotonates and rearranges to the product in a slow, OH?‐catalyzed reaction. The formation rates are lower than those for the corresponding Ln(dota) complexes. The dissociation rate of [Eu(dotagl)] is directly proportional to [H+] (0.1–1.0M HClO4); the proton‐assisted dissociation rate is lower for [Eu(H4dotagl)] (k1=8.1?10?6 M ?1 s?1) than for [Eu(dota)] (k1=1.4?10?5 M ?1 s?1).  相似文献   

6.
The two hexamines (H2N? CH2? CH2? )2N? (CH2)n? N(? CH2? CH2? NH2)2, «penten» (n = 2) and «ptetraen» (n=3) have been investigated as chelating agents for COIII (preparative Study) and some of the divalent metal ions (potentiometric and calorimetric studies). Both amines function as sexadentate ligands for CoIII, CoII and NiII, but one of the terminal aminogroups is much easier detached from the metal in case of M (penten)v+ than in case of M(ptetraen)v+, thus revealing more strain in the fivemembered chelate rings of the girdle plane of the «penten» complexes. On the other hand, the sixmembered chelate ring in M(ptetraen)v+ is more strained than the five-membered ring comprising the tertiary nitrogen atoms of M(penten)v+ CuII and ZnII coordinate with both ligands only 5 of the 6 basic nitrogen atoms present. Both hexaamines function as sexadentates again with MnII, but the metal is coordinated with a molecule of water in addition to the 6 nitrogen atoms in the «penten» complex in contrast to the «ptetraen» complex. The thermodynamic functions for the protonation of the hexamines and for the addition of metal ions in aqueous solution are understood in almost every detail. The dielectric shielding of the charges of the reactants exerted by the solvent has to be taken into account; it is reduced by electrostriction as well as by an increase in temperature. It is shown that the approach of charges of equal sign often is an exothermic process.  相似文献   

7.
In aqueous solution N, N′-bis-(4-(5)-imidazolylmethyl)-ethylenediamine-cobalt (II) (CoIMEN2+) takes up molecular oxygen giving μ-dioxygen-μ-hydroxo-bis-[N, N′-bis-(4-(5)-imidazolylmethyl)-ethylenediamine]-dicobalt (II). (Co IMEN)2 O2 (OH)3+ is exceptionally stable against irreversible autoxydation to CoIII species. Its absorption spectrum is very similar to that of the known analogous complex (CoTRIEN)2 O2 (OH)3+. The kinetics of formation and dissociation of (CoIMEN)2O2(OH)3+ are studied by spectrophotometry and with an oxygen specific electrode. The rate of the forward reaction is described by vf = [CoIMEN2+]2 · [O2] · (k1 + k2 · [OH?]) with k1 = 9 · 104 M?2 s?1 and k2 = 1 · 1012M?3 S?1, at 25° and I = 0,2. A mechanism including hydroxylated as well as nonhydroxylated intermediates is proposed. Dissociation is preceeded by protonation of the oxygen adduct. At pH 1–2 the rate of dissociation is independent of [H+] and follows first order kinetics: vD = k3 · [(CoIMEN)2O2(OH)3+] with k3 = 2.15 · 10?2 S?1.  相似文献   

8.
The kinetics of the base catalysed racemization of [Co(EN3A)H2O]
  • 1 Abbreviations: EN3A3?=(?OOCCH2)2N(CH2)2NHCH2COO?; ME3A3?=(?OOCCH2)2N(CH2)2 N(CH3)CH2COO?; EDDA2?=?OOCCH2NH(CH2)2NHCH2COO?; EDTA4?=(?OOCCH2)2N(CH2)2N(CH2COO?)2;TNTA4?=(?OOCCH2)2N(CH2)3N(CH3COO?)2; HETA3?=(?OOCCH2)2N(CH2)2N(CH2COO?)CH2CH2OH; en=H2N(CH2)2NH2; Meen=H2N(CH2)2NHCH3; sar?=?OOCCH2NHCH3.
  • were studied polarimetrically in aqueous buffer solution. The reaction rate is first order in OH? and in complex, in weakly acidic medium. Activation parameters are ΔH≠=22 kcal · mol?1, ΔS≠=26 cal · K?1. The results are discussed in terms of an SN1CB mechanism involving exchange of the ligand water molecule. The N-methylated analogue [Co(ME3A)H2O] does not racemize in the pH-range investigated. Loss of optical activity occurs at a rate which is about 1,000 times slower than the racemization of [Co(EN3A)H2O](60°) and coincides with the decomposition of the complex.  相似文献   

    9.
    Properties indirectly determined, or alluded to, in previous publications on the titled isomers have been measured, and the results generally support the earlier conclusions. Thus, the common five‐coordinate intermediate generated in the OH?‐catalyzed hydrolysis of exo‐ and endo‐[Co(dien)(dapo)X]2+ (X=Cl, ONO2) has the same properties as that generated in the rapid spontaneous loss of OH? from exo‐ and endo‐[Co(dien)(dapo)OH]2+ (40±2% endo‐OH, 60±2% exo‐OH) and an unusually large capacity for capturing (R=[CoN3]/[CoOH][]=1.3; exo‐[CoN3]/endo‐[CoN3]=2.1±0.1). Solvent exchange for spontaneous loss of OH? from exo‐[Co(dien)(dapo)OH]2+ has been measured at 0.04 s?1 (k1, 0.50M NaClO4, 25°) from which similar loss from the endo‐OH isomer may be calculated as 0.24 s?1 (k2). The OH?‐catalyzed reactions of exo‐ and endo‐[Co(dien)(dapo)N3]2+ result in both hydrolysis of coordinated via an OH?‐limiting process =153 M ?1 s?1; =295 M ?1 s?1; KH=1.3±0.1 M ?1; 0.50M NaClO4, 25.0°) and direct epimerization between the two reactants =33 M ?1 s?1; =110 M ?1 s?1; 1.0M NaClO4, 25.0°). Comparisons are made with other rapidly reacting CoIII‐acido systems.  相似文献   

    10.
    X-Ray Crystal-Structure Analysis of 2,4,6-Tri(tert-butyl)phenyllithium · N,N,N′,N′-Tetramethylpropane-1,2-diamine: a Monomeric Organolithium Compound Tri(tert-butyl)phenyllithium is an important reagent for the preparation of derivatives of main-group elements with low coordination state as well as a highly hindered base for the generation of amine-free Li-enolates. Its monomeric nature in solution was previously deduced from NMR measurements. While Et2O, THF, and N,N,N′,N′-tetramethylethylene-1,2-diamine (tmen) led to crystalline samples which were not suitable for structure analysis, the N,N,N′,N′-tetramethylpropane-1,2-diamine (tmpn) gave good single crystals of the title compound from Et2O/hexane (disorder along the two-fold crystallographic axis running through Li? C(1) and C(4) of the Ph ring. The structure (Fig. 1, Table 1) has some remarkable features: (i) it is one of the very few monomeric organolithium compounds so far, (η1-Li on aromatic ring); (ii) it has the rare trigonal-planar coordination of the Li-atom; iii) there are close contacts between the Li-atom arid one of the Me groups in each ortho-position (Fig. 3). The internal angle on the Ph-ring ipso-C-atom is 114°. This angle as well as those of the other known phenyllithium (Table 2), -magnesium, and -aluminum structures are included in a plot of ipso-angles against Pauling electronegativities (Fig. 2).  相似文献   

    11.
    N,N′‐dioxide ligands such as 2, 2′‐bipyridine‐N,N‐dioxide (BPDO‐I) and 4, 4′‐bipyridine‐N,N‐dioxide (BPDO‐II) were used to trap the hydrated dimethyltin cations under controlled hydrolysis. The use of the chelating ligand BPDO‐I leads to the isolation of the discrete monocation [Me2Sn(BPDO‐I)(OH2)(NO3)]+[NO3] ( 2 ), whereas the linear ligand BPDO‐II directs the construction of cationic polymers, [{Me2Sn(OH2)2(μ‐BPDO‐II)}2+{NO3}2 · 2H2O]n ( 3· 2H2O) and [{Me2Sn(μ‐OH)(BPDO‐II)}22+{NO3}2 · H2O]n ( 4· H2O) under different reaction conditions.  相似文献   

    12.
    The acid dissociation constants of 1,2-bis(cis-aminophenoxy)ethane-N,N,N′,N′;-tetraacetic acid (H4BAPAT or H4Z), and the stability constants of its chelates with tripositive rare-earth metal ions have been determined by the potentiometric titration and mercury indicator electrode methods at 15°, 25′ and 35°C and an ionic strength of 0.1 (KNO3). The existence of a monohydrogen chelate species, LnHZ, and the normal chelate, LnZ?, is illustrated. Enthalpy and entropy changes characterizing the formation of the normal chelates and the dissociation of the last two protons of chelating acid have been calculated at 25°C. These functions have been compared with corresponding values for related chelating agents.  相似文献   

    13.
    The structure of the title compound, C6H18N22+.2Cl?, has been determined and has a centre of symmetry. The mol­ecule has strong intermolecular hydrogen bonding between each Cl? and an N—H bond [Cl?N = 3.012 (3) Å].  相似文献   

    14.
    In the crystal structure of the title compound, [N,N′‐bis(3‐­amino­propyl)­ethyl­enedi­amine‐κ4N,N′,N′′,N′′′][1,3,5‐triazine‐2,4,6(1H,3H,5H)‐tri­thionato(2−)‐κ2N,S]­zinc(II) ethanol sol­vate, [Zn(C8H22N4)2(C3HN3S3)]·C2H6O, the ZnII atom is octa­hedrally coordinated by four N atoms [Zn—N = 2.104 (2)–2.203 (2) Å] of a tetradentate N‐donor N,N′‐bis(3‐­amino­propyl)­ethyl­enedi­amine (bapen) ligand and by two S and N atoms [Zn—S = 2.5700 (7) Å and Zn—N = 2.313 (2) Å] of a tri­thio­cyanurate(2−) (ttcH2−) dianion bonded as a bidentate ligand in a cis configuration. The crystal structure of the compound is stabilized by a network of hydrogen bonds.  相似文献   

    15.
    The crystal structure of the title 2:1 salt of tetrazole and a substituted terephthal­amidine, C16H28N42+·2CHN4?, contains an infinite network of hydrogen bonds, with short N?N distances of 2.820 (2) and 2.8585 (19) Å between the tetrazolate anion and the amidinium cation. Involvement of the lateral N atoms of the tetrazole in the hydrogen bonding appears to be a typical binding pattern for the tetrazolate anion.  相似文献   

    16.
    The reaction of trans-[Cr(Salen)(OH2)2]+ with aqueous sulfite yields trans-[Cr(Salen)(OH2)(OSO2(SINGLEBOND)O)] (O-bonded isomer). The rate and activation parameter data for the formation of the sulfito complex are consistent with a mechanism involving rate-limiting addition of SO2 to the CrIII(SINGLEBOND)OH bond. The complex ions, trans-[(OH2)Cr(Salen)(OSO2(SINGLEBOND)O)], and trans-[(OH)Cr(Salen)(OSO2(SINGLEBOND)O)]2−, undergo reversible anation by NCS, N3, imidazole, and pyridine resulting in the formation of trans-[XCr(Salen)(OSO2(SINGLEBOND)O)](N+1)−(n=1 for X=N3,NCS, and 0 for X=imidazole and pyridine) predominantly via dissociative interchange mechanism. The labilizing action of the coordinated sulfite on the trans-CrIII-X bond in trans-[XCr(Salen)(OSO2)](n+1)− follows the sequence: NCSpyridine ca. N3 ca. imidazole. Data analysis indicated that the coordinated sulfite has little trans activating influence. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 373–384, 1998  相似文献   

    17.
    1, 3‐Diaminobenzene reacts readily with PPh2Cl to give N, N, N′, N′‐tetrakis(diphenylphosphanyl)‐1, 3‐diaminobenzene ( 1 ) in excellent yield. The dinuclear complex [1, 3‐{cis‐Mo(CO)4(PPh2)2N}2C6H4] ( 2 ) is obtained in high yield from 1 and cis‐[Mo(CO)4(NCEt)2]. Compounds 1 and 2 were characterized by NMR spectroscopy (1H, 13C, 31P) and by crystal structure determination. The latter shows the formation of a bis‐chelate complex with Mo‐P‐N‐P four‐membered rings.  相似文献   

    18.
    Six mononuclear complexes are reported with the tetradentate ligand N,N′-bis(2-pyridylmethyl)-1,3-propanediamine, (abbreviated as pypn) i.e. [Cu(pypn)(ClO4)2](H2O)1/2 (1), [Fe(pypn)Cl2](NO3) (2), [Zn(pypn)Cl](ClO4) (3), [Co(pypn)(NCS)2](ClO4) (4), [Co(pypn)(N3)2](ClO4) (5), [Zn(pypn)(NCS)2] (6). The synthesis and X-ray crystal structures of all six compounds and their spectroscopic properties are presented.The geometry of the Cu2+, Co3+, Zn2+, Fe3+ ions is essentially octahedrally based, with the mm conformation (for Cu) and msf conformations for the other 3 metal ions; in compound 3 the geometry around the Zn2+ is distorted trigonal bipyramidal. The stabilisation of the crystal lattices is maintained by interesting, relative strong hydrogen bonds.  相似文献   

    19.
    王瑛  严莲荷 《中国化学》2005,23(7):843-846
    合成了标题化合物Co(S2CNC4H8NC2H5)3·3H2O,得到黑色四棱柱状晶体。晶体属三方晶系, 空间群为R-3, 晶胞参数a=1.37700(19), b=1.37700(19), c=3.0090(6) nm, γ=120°, Mr=680.98, V= 4.9411(14) nm3, Z=6, Dc=1.373 g/cm3, F(000)=2160, R = 0.0510 和 wR = 0.1436。中心Co原子分别与来自三个N´-乙基-N-哌嗪基二硫代氨基甲酸的六个硫原子配位形成略微扭曲的八面体构型。六个Co-S键的键长范围在0.22682(13)~0.22703(14) nm, 热分析表明标题化合物在799.97°C完全分解。  相似文献   

    20.
    The title complex, [Co(C12H8FN2O)3]·3H2O, has been synthesized for the first time. The complex comprises three bidentate ligands containing the pyridine‐2‐carbox­amide stem. The distorted octahedral coordination around the Co atom is formed via the pyridine (py) N atom and the deprotonated amide N atom of each ligand, with the three pyridine rings in a meridional arrangement. For each ligand, the pyridine ring and the carbonyl group are nearly coplanar, with torsion angles in the range 0.4 (3)–4.8 (4)°. The Co—Npy distances [1.9258 (16)–1.9656 (17) Å] are shorter than the corresponding Co—Namide distances [1.9372 (17)–1.9873 (15) Å]. In addition, the Co—Npy distances are closely related to the magnitudes of the chelate angles, a shorter Co—Npy distance corresponding to a larger angle. Five intermolecular hydrogen bonds, involving carbonyl O atoms of the ligands and lattice water mol­ecules, lead to the formation of a mesh structure.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号