首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yong Yang 《代数通讯》2013,41(2):565-574
Suppose that V is a finite faithful irreducible G-module where G is a finite solvable group of odd order. We prove if the action is quasi-primitive, then either F(G) is abelian or G has at least 212 regular orbits on V. As an application, we prove that when V is a finite faithful completely reducible G-module for a solvable group G of odd order, then there exists v ∈ V such that C G (v) ? F 2(G) (where F 2(G) is the 2nd ascending Fitting subgroup of G). We also generalize a result of Espuelas and Navarro. Let G be a group of odd order and let H be a Hall π-subgroup of G. Let V be a faithful G-module over a finite field of characteristic 2, then there exists v ∈ V such that C H (v) ? O π(G).  相似文献   

2.
《代数通讯》2013,41(11):4495-4505
Résumé

On donne une réponse explicite à la question suivante: étant donné un 3-cocycle Φ (sur le groupe G = ? N , à valeurs dans le G-module trivial ?) dont l'antisymétrisé est nul, construire une 2-cochaîne admettant Φ comme cobord.

Abstract

We give an explicit answer to the following question: given a 3-cocycle Φ (on the group G = ? N , with values in the trivial G-module ?) whose antisymmetric part is zero, construct a 2-cochain having Φ as coboundary.  相似文献   

3.
Aimin Xu 《代数通讯》2013,41(10):3793-3804
We show that an iteration of the procedure used to define the Gorenstein projective modules over a ring R yields exactly the Gorenstein projective modules. Specifically, given an exact sequence of Gorenstein projective left R-modules G = … → G 1 → G 0 → G 0 → G 1 → … such that the complex Hom R (G, H) is exact for each projective left R-module H, the module Im(G 0 → G 0) is Gorenstein projective. We also get similar results for Gorenstein flat left R-modules when R is a right coherent ring. As applications, we obtain the corresponding results for Gorenstein complexes.  相似文献   

4.
Abstract

Let R be a commutative Noetherian local Gorenstein ring with residue field k. We show that G(k), the Gorenstein injective envelope of k, is an artinian R-module, and we compute G(k) in the case where R = k[[S]] is a semigroup ring and S is symmetric. We also show that a certain subring of the endomorphism ring of G(k) is a complete local (but possibly non-commutative) ring.  相似文献   

5.
Lixin Mao 《代数通讯》2013,41(2):708-731
A ring R is called left P-coherent in case each principal left ideal of R is finitely presented. A left R-module M (resp. right R-module N) is called D-injective (resp. D-flat) if Ext1(G, M) = 0 (resp. Tor1(N, G) = 0) for every divisible left R-module G. It is shown that every left R-module over a left P-coherent ring R has a divisible cover; a left R-module M is D-injective if and only if M is the kernel of a divisible precover A → B with A injective; a finitely presented right R-module L over a left P-coherent ring R is D-flat if and only if L is the cokernel of a torsionfree preenvelope K → F with F flat. We also study the divisible and torsionfree dimensions of modules and rings. As applications, some new characterizations of von Neumann regular rings and PP rings are given.  相似文献   

6.
7.
Let G be a finitely generated group, and A a ?[G]-module of flat dimension n such that the homological invariant Σ n (G, A) is not empty. We show that A has projective dimension n as a ?[G]-module. In particular, if G is a group of homological dimension hd(G) = n such that the homological invariant Σ n (G, ?) is not empty, then G has cohomological dimension cd(G) = n. We show that if G is a finitely generated soluble group, the converse is true subject to taking a subgroup of finite index, i.e., the equality cd (G) = hd(G) implies that there is a subgroup H of finite index in G such that Σ(H, ?) ≠ ?.  相似文献   

8.
Pablo Spiga 《代数通讯》2013,41(7):2540-2545
Let K be a field of characteristic p > 0, K* the multiplicative group of K and G = G p  × B a finite group, where G p is a p-group and B is a p′-group. Denote by K λ G a twisted group algebra of G over K with a 2-cocycle λ ∈Z 2(G, K*). In this article, we give necessary and sufficient conditions for K λ G to be of OTP representation type, in the sense that every indecomposable K λ G-module is isomorphic to the outer tensor product V#W of an indecomposable K λ G p -module V and an irreducible K λ B-module W.  相似文献   

9.
《代数通讯》2013,41(10):3409-3418

Let V be a ? G-module where ? is the field of all complex numbers and G is a symmetric group. The purpose of this article is to give a method of analyzing the Lie powers L n (V ), for every positive integer n, by making use of the recent work of Bryant.  相似文献   

10.
Massoud Tousi 《代数通讯》2013,41(11):3977-3987
ABSTRACT

Assume that ?:(R, ± 𝔪) → (S, ± 𝔫) is a local flat homomorphism between commutative Noetherian local rings R and S. Let M be a finitely generated R-module. We investigate the ascent and descent of sequentially Cohen-Macaulay properties between the R-module M and the S-module M ? R  S.  相似文献   

11.
David I. Stewart 《代数通讯》2013,41(12):4702-4716
Let G be the simple, simply connected algebraic group SL 3 defined over an algebraically closed field K of characteristic p > 0. In this article, we find H 2(G, V) for any irreducible G-module V. When p > 7, we also find H 2(G(q), V) for any irreducible G(q)-module V for the finite Chevalley groups G(q) = SL(3, q) where q is a power of p.  相似文献   

12.
G. L. Booth  K. Mogae 《代数通讯》2017,45(1):322-331
For any group G such that G is a right R-module for some ring R, the elements of R act on G as endomorphisms and we obtain the near-ring of R-homogeneous maps on G: MR(G) = {f: G → G|f(ga) = f(g)a for all a ∈ R, g ∈ G}. In the special case that R is a topological ring and G is a topological R-module, we study NR(G): = {f ∈ MR(G)|f is continuous}. In particular, we investigate primeness of the near-ring NR(G) of continuous homogeneous maps on G.  相似文献   

13.
Let R be a commutative ring with unit, and let E be an R-module. We say the functor of R-modules E, defined by E(B) = E ? R B, is a quasi-coherent R-module, and its dual E* is an R-module scheme. Both types of R-module functors are essential for the development of the theory of the linear representations of an affine R-group. We prove that a quasi-coherent R-module E is an R-module scheme if and only if E is a projective R-module of finite type, and, as a consequence, we also characterize finitely generated projective R-modules.  相似文献   

14.
Lixin Mao 《代数通讯》2013,41(12):4319-4327
In this article, we study the weak global dimension of coherent rings in terms of the left FP-injective resolutions of modules. Let R be a left coherent ring and ? ? the class of all FP-injective left R-modules. It is shown that wD(R) ≤ n (n ≥ 1) if and only if every nth ? ?-syzygy of a left R-module is FP-injective; and wD(R) ≤ n (n ≥ 2) if and only if every (n ? 2)th ? ?-syzygy in a minimal ? ?-resolution of a left R-module has an FP-injective cover with the unique mapping property. Some results for the weak global dimension of commutative coherent rings are also given.  相似文献   

15.
Let A be an R G-module, where R is an integral domain and G is a soluble group. Suppose that C G (A) = 1 and A/C A (G) is not a noetherian R-module. Let L nnd(G) be the family of all subgroups H of G such that A/C A (H) is not a noetherian R-module. In this paper we study the structure of those G for which L nnd(G) satisfies the maximal condition.  相似文献   

16.
We consider an R G-module A over a commutative Noetherian ring R. Let G be a group having infinite section p-rank (or infinite 0-rank) such that C G (A) = 1, A/C A (G) is not a Noetherian R-module, but the quotient A/C A (H) is a Noetherian R-module for every proper subgroup H of infinite section p-rank (or infinite 0-rank, respectively). In this paper, it is proved that if G is a locally soluble group, then G is soluble. Some properties of soluble groups of this type are also obtained.  相似文献   

17.
Lingli Wang 《代数通讯》2013,41(2):523-528
Let G be a nonabelian group and associate a noncommuting graph ?(G) with G as follows: The vertex set of ?(G) is G\Z(G) with two vertices x and y joined by an edge whenever the commutator of x and y is not the identity. In 1987, Professor J. G. Thompson gave the following conjecture.

Thompson's Conjecture. If G is a finite group with Z(G) = 1 and M is a nonabelian simple group satisfying N(G) = N(M), then G ? M, where N(G):={n ∈ ? | G has a conjugacy class of size n}.

In 2006, A. Abdollahi, S. Akbari, and H. R. Maimani put forward a conjecture (AAM's conjecture) in Abdollahi et al. (2006) as follows.

AAM's Conjecture. Let M be a finite nonabelian simple group and G a group such that ?(G) ? ? (M). Then G ? M.

In this short article we prove that if G is a finite group with ?(G) ? ? (A 10), then G ? A 10, where A 10 is the alternating group of degree 10.  相似文献   

18.
《代数通讯》2013,41(4):1777-1797
Abstract

In this paper we introduce and study the local quiver as a tool to investigate the étale local structure of moduli spaces of θ-semistable representations of quivers. As an application we determine the dimension vectors associated to irreducible representations of the torus knot groups G p,q  = ?a, b ∣ a  p  = b q ?.  相似文献   

19.
Willian Franca 《代数通讯》2013,41(6):2621-2634
Let R be a simple unital ring. Under a mild technical restriction on R, we will characterize biadditive mappings G: R2 → R satisfying G(u, u)u = uG(u, u), and G(1, r) = G(r, 1) = r for all unit u ∈ R and r ∈ R, respectively. As an application, we describe bijective linear maps θ: R → R satisfying θ(xyx?1y?1) = θ(x)θ(y)θ(x)?1θ(y)?1 for all invertible x, y ∈ R. This solves an open problem of Herstein on multiplicative commutators. More precisely, we will show that θ is an isomorphism. Furthermore, we shall see the existence of a unital simple ring R′ without nontrivial idempotents, that admits a bijective linear map f: R′ → R′, preserving multiplicative commutators, that is not an isomorphism.  相似文献   

20.
《代数通讯》2013,41(11):4507-4513
Abstract

Let G be a finite group and ω(G) the set of all orders of elements in G. Denote by h(ω(G)) the number of isomorphism classes of finite groups H satisfying ω(H) = ω(G), and put h(G) = h(ω(G)). A group G is called k-recognizable if h(G) = k < ∞ , otherwise G is called non-recognizable. In the present article we will show that the simple groups PSL(3, q), where q ≡ ±2(mod 5) and (6, (q ? 1)/2) = 2, are 2-recognizable. Therefore if q is a prime power and q ≡ 17, 33, 53 or 57 (mod 60), then the groups PSL(3, q) are 2-recognizable. Hence proving the existing of an infinite families of 2-recognizable simple groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号