首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
It is shown that the growth of a nanosized fullerite film in the C60 molecules-Nb(100) surface adsorption system depends essentially on the chemical state of adsorbed sulfur. In particular, sulfur as the surface sulfide NbS with a concentration of (9±0.2) × 1014 cm?2 has almost no effect on the adsorption: as on the pure metal, fullerene molecules from the first and, partially, second layers undergo considerable degradation and do not desorb at any temperatures upon the subsequent heating. On the contrary, C60 molecules retain their structure on a valence-saturated NbS2 monolayer with almost the same surface concentration of S atoms, build a fullerite film as crystallites without the formation of an intermediate monolayer (Volmer-Weber mechanism), and completely leave the surface at 800 K, which remains unchanged and uncontaminated.  相似文献   

2.
Scanning tunneling microscopy (STM) is used to study the basic laws of growth of ultrathin epitaxial CoSi2(111) films with Co coverages up to 4 ML formed upon sequential deposition of Co and Si atoms taken in a stoichiometric ratio onto the Co–Si(111) surface at room temperature and subsequent annealing at 600–700°C. When the coverage of Co atoms is lower than ~2.7 ML, flat CoSi2 islands up to ~3 nm high with surface structure 2 × 2 or 1 × 1 grow. It is shown that continuous epitaxial CoSi2 films containing 3–4 triple Si–Co–Si layers grow provided precise control of deposition. CoSi2 films can contain inclusions of the local regions with (2 × 1)Si reconstruction. At a temperature above 700°C, a multilevel CoSi2 film with pinholes grows because of vertical growth caused by the difference between the free energies of the CoSi2(111) and Si(111) surfaces. According to theoretical calculations, structures of A or B type with a coordination number of 8 of Co atoms are most favorable for the CoSi2(111)2 × 2 interface.  相似文献   

3.
A three-dimensional (3D) reconstruction of the atomic structure of the (100) surface of a 1T-TiSe2 layered dichalcogenide crystal has been performed from X-ray photoelectron and Auger electron diffraction data. The diffraction patterns of the emission of Auger electrons of Se(LMM) selenium and photoelectrons of Ti2p titanium have been considered as holographic diagrams. Being processed with the scattering pattern extraction algorithm using the maximum entropy method (SPEA-MEM), they provide individual 3D images of the nearest environment of selenium and titanium atoms in the TiSe2 lattice. Using reconstructed 3D images, the positions of 128 atoms in the 2 × 2 × 1.5-nm region of the surface layer of TiSe2 have been determined. The structure of the surface has a 1T polytype. Interatomic distances in the layer and van der Waals gap are larger than the respective parameters in the bulk of the crystal. It is assumed that titanium layers in two Se-Ti-Se upper surface structural units are displaced along the [001] axis. The structure of the surface layer can be described by a unit cell of the P3 space group with the parameters a = 3.85 Å and c = 14.4 Å.  相似文献   

4.
The modification of GaAs with a 2500-eV beam containing N 2 + and Ar+ ions is examined with Auger electron spectroscopy. Most implanted nitrogen atoms are found to react with the matrix, substituting arsenic atoms to produce a several-nanometer-thick layer of the single-phase GaAs1−x Nx (x=6%) solid solution. The GaN phase is absent. Displaced arsenic atoms and nitrogen atoms unreacted with the matrix are present in the layer and on its surface. The former segregate, whereas the latter form molecules.  相似文献   

5.
Nitrogen and boron BF2, and nitrogen, carbon, and boron BF2 high-dose (6×1016–3×1017 cm-2) co-implantation were performed at energies of about 21–77 keV. Subsequent high-temperature annealing processes (600, 850, and 1200 °C) lead to the formation of three and two surface layers respectively. The outer layer mainly consists of polycrystalline silicon and some amorphous material and Si3N4 inclusions. The inner layer is highly defective crystalline silicon, with some inclusions of Si3N4 too. In the N+B-implanted sample the intermediate layer is amorphous. Co-implantation of boron with nitrogen and with nitrogen and carbon prevents the excessive diffusivity of B and leads to a lattice-parameter reduction of 0.7–1.0%. Received: 10 January 2002 / Accepted: 30 May 2002 / Published online: 4 November 2002 RID="*" ID="*"Corresponding author. Fax: +34-91/3974895; E-mail: Lucia.Barbadillo@uam.es  相似文献   

6.
The phase chemical composition of an Al2O3/Si interface formed upon molecular deposition of a 100-nm-thick Al2O3 layer on the Si(100) (c-Si) surface is investigated by depth-resolved ultrasoft x-ray emission spectroscopy. Analysis is performed using Al and Si L2, 3 emission bands. It is found that the thickness of the interface separating the c-Si substrate and the Al2O3 layer is approximately equal to 60 nm and the interface has a complex structure. The upper layer of the interface contains Al2O3 molecules and Al atoms, whose coordination is characteristic of metallic aluminum (most likely, these atoms form sufficiently large-sized Al clusters). The shape of the Si bands indicates that the interface layer (no more than 10-nm thick) adjacent to the substrate involves Si atoms in an unusual chemical state. This state is not typical of amorphous Si, c-Si, SiO2, or SiOx (it is assumed that these Si atoms form small-sized Si clusters). It is revealed that SiO2 is contained in the vicinity of the substrate. The properties of thicker coatings are similar to those of the 100-nm-thick Al2O3 layer and differ significantly from the properties of the interfaces of Al2O3 thin layers.  相似文献   

7.
To analyze the origin of the magnetic enhancement of Fe-Ni alloy, the electronicconfigurations and magnetic properties were investigated using density functional theorybased on the first-principle. The supercell (5 × 1 × 1) of Fe,Fe9Ni1 and Fe8Ni2 were constructed. Thedefect formation energy, band structure, density of states and electron density differencewere calculated. The results showed that Ni doping changed the electronic configuration ofFe atoms, resulting in the enhancement of spin polarization of Fe and the larger Bohrmagnetic moment in Fe-Ni alloys (Fe9Ni1). The results showed thatthe charge transfer and the atomic spacing between Fe atoms and the dopant Ni atoms playedan important role in determination of magnetic moment. The value of Fe supercell(5 × 1 × 1), Fe9Ni1 and Fe8Ni2 were 23.14,23.34 and 22.61μ B, respectively.  相似文献   

8.
9.
Electrodynamic properties of Pb(Fe0.95Sc0.05)2/3W1/3O3 solid solution belonging to A(B'B'')O3 perovskite structural family have been investigated by broadband dielectric spectroscopy in a wave-number range of (4 × 10–9–4 × 103) cm–1 and a temperature range of 100–600 K. The influence of low-frequency relaxations on the vibrational spectrum is determined within the four-parameter factorized dispersion model. Anomalies in the behavior of the dielectric response function are found near the temperature-diffuse maximum of permittivity.  相似文献   

10.
A nanohybrid C-LiMnPO4 is important to tailor its electrochemical properties useful for Li+-ion batteries and photo-catalysis. In this article, we report a simple in situ C-LiMnPO4 synthesis, wherein the LiMnPO4 grows from a supersaturated solution LiOH·H2O, MnSO4·H2O, and H3PO4 in water at 200 °C in an autoclave in a hydrothermal reaction and bonds in situ to nascent carbon of a surface layer on a surface reaction with a long chain hydrocarbon used during the reaction. A phase pure C-LiMnPO4 is formed in a shape of nanorods (Pnma orthorhombic crystal structure), with 100–150 nm diameters, 150–800 nm lengths, and 2–3 nm thickness of a co-bonded C-sp2 surface layer. The LiMnPO4 rigidly co-bonds to C-sp2 via O2? in the PO4 3? polygons in a joint surface layer that a single molecular bonding extends well up to 600 °C, with a due mass loss on an extended heating in air. The sample contains fine pores with an average 3.0 nm diameter and a 9.0 m2/g surface area. At room temperature, it develops a huge dielectric permittivity ε r~1.9 × 105 near 1 Hz frequencies, which on raising the frequency decays progressively to a fairly steady ε r~1.5 × 103 at ≥1 kHz. Bare LiMnPO4 is a low dielectric phase, ε r < 10. A non-Debye type of dielectric relaxation is shown in the modulus plots. As frequency approaches to 105 Hz, nearly three orders of larger ac conductivity, 2.5 × 10?5 Scm?1 at 106 Hz, develop over a carbon-free LiMnPO4 value useful for the applications.  相似文献   

11.
Akihiro Ohtake 《Surface science》2012,606(23-24):1886-1891
Adsorption of Al atoms on the As-stabilized InAs(001)—(2 × 4) surface induces the formation of the Al-stabilized (2 × 4) reconstruction. The Al-stabilized (2 × 4) surface has mixed In–As dimer at the outermost layer with the Al atoms being incorporated into the subsurface layers. Heating of the Al-stabilized (2 × 4) surface further promotes the diffusion of Al into deeper layers, which results in the formation of the In-rich (4 × 2) structure with the ζa structure.  相似文献   

12.
The structural and electronic properties of group III rich In0.53Ga0.47As(001) have been studied using scanning tunneling microscopy/spectroscopy (STM/STS). At room temperature (300 K), STM images show that the In0.53Ga0.47As(001)–(4 × 2) reconstruction is comprised of undimerized In/Ga atoms in the top layer. Quantitative comparison of the In0.53Ga0.47As(001)–(4 × 2) and InAs(001)–(4 × 2) shows the reconstructions are almost identical, but In0.53Ga0.47As(001)–(4 × 2) has at least a 4× higher surface defect density even on the best samples. At low temperature (77 K), STM images show that the most probable In0.53Ga0.47As(001) reconstruction is comprised of one In/Ga dimer and two undimerized In/Ga atoms in the top layer in a double (4 × 2) unit cell. Density functional theory (DFT) simulations at elevated temperature are consistent with the experimentally observed 300 K structure being a thermal superposition of three structures. DFT molecular dynamics (MD) show the row dimer formation and breaking is facilitated by the very large motions of tricoodinated row edge As atoms and z motion of In/Ga row atoms induced changes in As–In/Ga–As bond angles at elevated temperature. STS results show there is a surface dipole or the pinning states near the valence band (VB) for 300 K In0.53Ga0.47As(001)–(4 × 2) surface consistent with DFT calculations. DFT calculations of the band-decomposed charge density indicate that the strained unbuckled trough dimers being responsible for the surface pinning.  相似文献   

13.
In this work, Li2ZrF6, a lithium salt additive, is reported to improve the interface stability of LiNi0.5Mn1.5O4 (LNMO)/electrolyte interface under high voltage (4.9 V vs Li/Li+). Li2ZrF6 is an effective additive to serve as an in situ surface coating material for high-voltage LNMO half cells. A protective SEI layer is formed on the electrode surface due to the involvement of Li2ZrF6 during the formation of SEI layer. Charge/discharge tests show that 0.15 mol L?1 Li2ZrF6 is the optimal concentration for the LiNi0.5Mn1.5O4 electrode and it can improve the cycling performance and rate property of LNMO/Li half cells. The results obtained by electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) demonstrate that Li2ZrF6 can facilitate the formation of a thin, uniform, and stable solid electrolyte interface (SEI) layer. This layer inhibits the oxidation decomposition of the electrolyte and suppresses the dissolution of the cathode materials, resulting in improved electrochemical performances.  相似文献   

14.
In order to establish the mechanism and to determine the parameters of lithium transport in electrodes based on lithium-vanadium phosphate (Li3V2(PO4)3), the kinetic model was designed and experimentally tested for joint analysis of electrochemical impedance (EIS), cyclic voltammetry (CV), pulse chronoamperometry (PITT), and chronopotentiometry (GITT) data. It comprises the stages of sequential lithium-ion transfer in the surface layer and the bulk of electrode material’s particles, including accumulation of lithium in the bulk. Transfer processes at both sites are of diffusion nature and differ significantly, both by temporal (characteristic time, τ) and kinetic (diffusion coefficient, D) constants. PITT data analysis provided the following D values for the predominantly lithiated and delithiated forms of the intercalation material: 10?9 and 3 × 10?10 cm2 s?1, respectively, for transfer in the bulk and 10?12 cm2 s?1 for transfer in the thin surface layer of material’s particles. D values extracted from GITT data are in consistency with those obtained from PITT: 3.5–5.8 × 10?10 and 0.9–5 × 10?10 cm2 s?1 (for the current and currentless mode, respectively). The D values obtained from EIS data were 5.5 × 10?10 cm2 s?1 for lithiated (at a potential of 3.5 V) and 2.3 × 10?9 cm2 s?1 for delithiated (at a potential 4.1 V) forms. CV evaluation gave close results: 3 × 10?11 cm2 s?1 for anodic and 3.4 × 10?11 cm2 s?1 for cathodic processes, respectively. The use of complex experimental measurement procedure for combined application of the EIS, PITT, and GITT methods allowed to obtain thermodynamic E,c dependence of Li3V2(PO4)3 electrode, which is not affected by polarization and heterogeneity of lithium concentration in the intercalate.  相似文献   

15.
Single-crystal (100) and (001) TiO2 rutile substrates have been implanted with 40 keV Fe+ at room temperature with high doses in the range of (0.5–1.5) × 1017 ions/cm2. A ferromagnetic resonance (FMR) signal has been observed for all samples with the intensity and the out-of-plane anisotropy increasing with the implantation dose. The FMR signal has been related to the formation of a percolated metal layer consisting of close-packed iron nanoparticles in the implanted region of TiO2 substrate. Electron spin resonance (ESR) signal of paramagnetic Fe3+ ions substituting Ti4+ positions in the TiO2 rutile structure has been also observed. The dependences of FMR resonance fields on the DC magnetic field orientation reveal a strong in-plane anisotropy for both (100) and (001) substrate planes. An origin of the in-plane anisotropy of FMR signal is attributed to the textured growth of the iron nanoparticles. As result of the nanoparticle growth aligned with respect to the structure of the rutile host, the in-plane magnetic anisotropy of the samples reflects the symmetry of the crystal structure of the TiO2 substrates. Crystallographic directions of the preferential growth of iron nanoparticles have been determined by computer modeling of anisotropic ESR signal of substitutional Fe3+ ions.  相似文献   

16.
The initial stages of oxidation of the In-rich InAs(0 0 1)-(4 × 2)/c(8 × 2) surface by molecular oxygen (O2) were studied using scanning tunneling microscopy (STM) and density functional theory (DFT). It was shown that the O2 dissociatively chemisorbs along the rows in the [1 1 0] direction on the InAs surface either by displacing the row-edge As atoms or by inserting between In atoms on the rows. The dissociative chemisorption is consistent with being autocatalytic: there is a high tendency to form oxygen chemisorption sites which grow in length along the rows in the [1 1 0] direction at preexisting oxygen chemisorption sites. The most common site size is about 21-24 Å in length at ∼25% ML coverage, representing 2-3 unit cell lengths in the [1 1 0] direction (the length of ∼5-6 In atoms on the row). The autocatalysis was confirmed by modeling the site distribution as non-Poisson. The autocatalysis and the low sticking probability (∼10−4) of O2 on the InAs(0 0 1)-(4 × 2)/c(8 × 2) are consistent with activated dissociative chemisorption. The results show that is it critical to protect the InAs surface from oxygen during subsequent atomic layer deposition (ALD) or molecular beam epitaxy (MBE) oxide growth since oxygen will displace As atoms.  相似文献   

17.
The effect of pulsed ion-beam annealing on the surface morphology, structure, and composition of single-crystal Si(111) wafers implanted by chromium ions with a dose varying from 6 × 1015 to 6 × 1016 cm−2 and on subsequent growth of silicon is investigated for the first time. It is found that pulsed ion-beam annealing causes chromium atom redistribution in the surface layer of the silicon and precipitation of the polycrystalline chromium disilicide (CrSi2) phase. It is shown that the ultrahigh-vacuum cleaning of the silicon wafers at 850°C upon implantation and pulsed ion-beam annealing provides an atomically clean surface with a developed relief. The growth of silicon by molecular beam epitaxy generates oriented 3D silicon islands, which coalesce at a layer thickness of 100 nm and an implantation dose of 1016 cm−2. At higher implantation doses, the silicon layer grows polycrystalline. As follows from Raman scattering data and optical reflectance spectroscopy data, semiconducting CrSi2 precipitates arise inside the silicon substrate, which diffuse toward its surface during growth.  相似文献   

18.
Epitaxially grown GaAs(001), (111) and (1?1?1?) surfaces and their behaviour on Cs adsorption are studied by LEED, AES and photoemission. Upon heat treatment the clean GaAs(001) surface shows all the structures of the As-stabilized to the Ga-stabilized surface. By careful annealing it is also possible to obtain the As-stabilized surface from the Ga-stabilized surface, which must be due to the diffusion of As from the bulk to the surface. The As-stabilized surface can be recovered from the Ga-stabilized surface by treating the surface at 400°C in an AsH3 atmosphere. The Cs coverage of all these surfaces is linear with the dosage and shows a sharp breakpoint at 5.3 × 1014 atoms cm?2. The photoemission reaches a maximum precisely at the dosage of this break point for the GaAs(001) and GaAs(1?1?1?) surface, whereas for the GaAs(111) surface the maximum in the photoemission is reached at a higher dosage of 6.5 × 1014 atoms cm?2. The maximum photoemission from all surfaces is in the order of 50μA Im?1 for white light (T = 2850 K). LEED measurements show that Cs adsorbs as an amorphous layer on these surfaces at room temperature. Heat treatment of the Cs-activated GaAs (001) surface shows a stability region of 4.7 × 1014 atoms cm?2 at 260dgC and one of 2.7 × 1014 atoms cm?2 at 340°C without any ordering of the Cs atoms. Heat treatment of the Cs-activated GaAs(111) crystal shows a gradual desorption of Cs up to a coverage of 1 × 1014 atoms cm?2, which is stable at 360°C and where LEED shows the formation of the GaAs(111) (√7 × √7)Cs structure. Heat treatment of the Cs-activated GaAs(1?1?1?) crystal shows a stability region at 260°C with a coverage of 3.8 × 1014 atoms cm?2 with ordering of the Cs atoms in a GaAs(1?1?1?) (4 × 4)Cs structure and at 340°C a further stability region with a coverage of 1 × 1014 at cm?2 with the formation of a GaAs(1?1?1?) (√21 × √21)Cs structure. Possible models of the GaAs(1?1?1?) (4 × 4)Cs, GaAs(1?1?1?)(√21 × √21)Cs and GaAs(111) (√7 × √7)Cs structures are given.  相似文献   

19.
The Li[Li0.2Mn0.54Ni0.13Co0.13]O2 coated with CeO2 has been fabricated by an ionic interfusion method. Both the bare and the CeO2-coated samples have a typical layered structure with R-3m and C2/m space group. The results of XRD and TEM images display that the CeO2 coating layer on the precursor could enhance the growth of electrochemically active surface planes ((010), (110), and (100) planes) in the following ionic interfusion process. The results of galvanostatic cycling tests demonstrate that the CeO2-coated sample has a discharge capacity of 261.81 mAh g?1 with an increased initial Coulombic efficiency from 62.4 to 69.1% at 0.05 °C compared with that of bare sample and delivers an improved capacity retention from 71.7 to 83.4% after 100 cycles at 1 °C (1 °C?=?250 mA g?1). The results of electrochemical performances confirm that the surface modification sample exhibits less capacity fading, lower voltage decay, and less polarization.  相似文献   

20.
This paper presents the crystal growth and optical characterization of thulium-doped KLu(WO4)2 (KLuW). Thulium-doped KLuW macrodefect-free monoclinic single crystals (a*×b×c≈10×7×15 mm3) were grown by the top seeded solution growth slow cooling method with dopant concentrations of 0.5%, 1%, 3% and 5% atomic in solution. The evolution of unit cell parameters in relation with thulium doping was studied by X-ray powder patterns. Thulium energy levels in the KLuW host were determined by 6 K polarized optical absorption. The Judd–Ofelt parameters determined were Ω2=9.01×10-20 cm2, Ω4=1.36×10-20 cm2 and Ω6=1.43×10-20 cm2. The maximum emission cross section for the 1.9 μm emission, calculated by Füchtbauer–Ladenburg method, is 1.75×10-20 cm2, at 1845 nm with E//Nm. The intensity decay time from the emitting levels 1 G 4 and 3 H 4 levels in relation to the concentration were studied. For the lowest thulium concentration, the measured decay times from 1 G 4 and 3 H 4 emitting levels are 140 μs and 230 μs, respectively. PACS 42.55.Rz; 78.20.-e; 78.55.-m  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号