首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new metastable binary compound with the skutterudite crystal structure has been synthesized from modulated elemental reactants, through an amorphous intermediate, using a novel low-temperature synthesis technique. The amorphous reaction intermediate undergoes nucleation at 87 degrees C, an extremely low temperature for solid-state reactions. When heated above 350 degrees C, the metastable phase NiSb(3) disproportionates into the thermodynamically stable phases NiSb(2) and Sb. Also, if the sum of the individual elemental layer thicknesses is greater than 30 A, a mixture of different phases forms. Simulation of the high-angle powder X-ray diffraction spectrum confirms that NiSb(3) is isostructural with CoSb(3).  相似文献   

2.
A series of samples ((AB)(x)(CD)(y))(z) were prepared containing both short repeat units (AB and CD) and long repeat units ((AB)(x)(CD)(y)), where the short repeat units were designed to have the composition appropriate to form square M(4)Sb(12) skutterudites (M = Fe, Co, or Ir; square = vacancy, La, or Y). X-ray diffraction and reflectivity were used to follow the evolution of the films from amorphous, layered materials to crystalline skutterudite superlattices as a function of annealing temperature and time. In all cases, the short repeat units interdiffused and crystallized the expected skutterudite, while the long repeat period persisted after annealing. The skutterudites crystallize with random crystallographic orientation with respect to the substrate. The observed splitting of the peaks in the high-angle diffraction data from the IrSb(3)/CoSb(3) sample indicates the formation of a novel superlattice structure with each grain having a random crystallographic orientation of the skutterudite lattice with respect to the superlattice direction.  相似文献   

3.
Modulated elemental reactants containing iron and antimony were found to react at low temperature (T < 200 degrees C) forming either FeSb(2) or FeSb(3) depending on both the layer thicknesses and the overall composition of the initial reactant. For films containing 75% antimony and 25% iron, the metastable compound FeSb(3) was observed to nucleate and grow if the layer thickness was below approximately 35 A. Above this critical thickness for the modulation, annealing led to the formation of FeSb(2). This, combined with low-angle diffraction data, suggests that the initial interdiffusion between iron and antimony layers in an elementally modulated reactant results in the formation of an amorphous reaction intermediate if the layering thickness is less than 35 A. For modulated reactants with composition between 70 and 90 atomic % antimony and below this critical layer thickness, the metastable compound FeSb(3) formed. In more iron-rich modulated reactants FeSb(2) nucleates. The nucleation temperature and the nucleation energy of FeSb(3) were found to be a function of the composition of the amorphous intermediate, while those of FeSb(2) were found to be relatively independent of composition.  相似文献   

4.
The synthesis of filled skutterudite compounds (Ce or Y)_y(Fe)_x(Co)_(4x)(Sb)_(12), through a solidstate reaction using chloride of Ce or Y,high purity powder of Co, Fe, and Sb as starting materials,was investigated. (Ce or Y)_y(Fe)_x(Co)_(4x)(Sb)_(12) (x=0--1.0, y=0--0.15) compounds were obtained at850--1 123 K. The results of Rietveld analysis demonstrate that (Ce or Y)_y(Fe)_x(Co)_(4x)(Sb)_12synthesized by a solid state reaction possesses a filled skutterudite structure. The filling fraction ofCe or Y obtained by Rietveld analysis agrees well with the composition obtained by chemicalanalysis. The lattice constant of (Ce)_y(Fe)_x(Co)_(4x)(Sb)_(12) increases with increasing substitution of Fe at Cosites, and with an increasing Ce filling fraction in the Sb-dodecahedron voids. The lattice thermalconductivity of (Ce or Y)_y(Fe)_x(Co)_(4x)(Sb)_(12) decreases significantly with an increasing Ce or Y fillingfraction in the voids and with substitution of Fe at Co sites.  相似文献   

5.
A thin-layer synthesis technique was used to synthesize bulk amounts of the metastable phase, RuSb(3), a novel compound with the skutterudite structure. The compound crystallized at 350 degrees C and was stable to 525 degrees C. When annealed above 550 degrees C, it decomposed into RuSb(2) and Sb. Rietveld refinement of X-ray diffraction data showed the presence of excess Sb residing in the interstitial site in the skutterudite structure. X-ray diffraction and thermal analysis experiments allowed us to examine the evolution of the sample as a function of annealing and determine the reaction pathway. The activation energy for the crystallization of the compound was determined to be 3 eV/nucleation event, while the activation energy for decomposition was approximately 8 eV.  相似文献   

6.
We report a theoretical investigation of free-standing Fe(x)Co(y)Ni(z) ternary clusters with x + y + z = 5 and 6. Our study is performed within density functional theory as implemented in the GAUSSIAN 03 set of programs and with the BPW91/SDD level of theory. We analyze the geometries, chemical order, local and total magnetic moments, binding energies, excess energies, and second difference in the energy in the whole range of composition, from which structural, magnetic, and stability phase diagrams are predicted for these cluster sizes. We determine the optimal stoichiometries for these clusters as regards the maximum total magnetic moment and stability.  相似文献   

7.
Starting from elemental powder mixtures, single-phase LaxCo3.6Ni0.4Sb12(x=0, 0.1, 0.4, 0.6)-filled skutterudites were synthesized via the route of mechanical alloying-hot pressing (MA-HP) in this paper. With increasing of La fraction, the lattice spacing of filled skutterudite phase increases and its variation follows the Vegard's law. The magnitude of the Seebeck coefficient and electrical resistivity show slight increases with increasing of La filling fraction; thermal conductivity of the filled skutterudite decreases and the resultant figure of merit increases with increase of La filling fraction. The as-HPed filled skutterudite has a composite nanocrystalline microstructure, which includes some coral-like clusters with relatively large spoke-like grains about 300 nm in length and a superfine equiaxial nanocrystalline matrix with an average grain size of about 50 nm. The coral-like cluster corresponds to the prime filled skutterudite formed directly by MA, while the filled skutterudite formed during hot pressing, which has the same nucleation condition and experiences less grain growth, develops equiaxially into the superfine nanocrystalline matrix.  相似文献   

8.
GeTe(1-x)-Sb2Te3(x) sputtered amorphous film was crystallized into a simple NaCl-type structure through instantaneous laser irradiation over a wide composition range from x = 0 to at least 2/3. When the ratio of Sb2Te3 increases, a vacancy is generated at every Na site for two Sb atoms. The fraction of vacancies, v(x), changes according to x/(1 + 2x), and the cubic root unit cell volume varies with a strong correlation to v(x). Through these created vacancies, valence electrons provided by adjacent Ge/Sb and Te atoms remain constant regardless of the composition, ensuring that these electrons occupy predominantly the bonding molecular orbitals. This results in crystal chemical stability, with the closed shell p-p bondings in the valence electrons arranging the crystal's atomic configuration into an NaCl-type structure.  相似文献   

9.
A solid-state growth technique is described for the preparation of misfit layered compounds [(Bi2Te3)x{(TiTe2)y}1.36] from preconfigured reactants that provide independent control of both x and y. A procedure for optimizing the structure of the preconfigured amorphous reactants is presented demonstrating the importance of controlling both the composition and the absolute thicknesses of the component layers. Data are presented highlighting the effect of the diffusion distances of the preconfigured reactants on the kinetics of product formation.  相似文献   

10.
New reactions to prepare stabilized zirconia using rare earth fluorides as the solid electrolyte have been examined by means of X-ray diffraction, DTA and EPMA methods. The eleven rare earth fluorides of yttrium and samarium through lutetium reacted with ZrO2 to form new types of stabilized zirconias (LnFSZ) consisting of the ternary system of ZrO2-Ln2O3-LnF3. (2x+3y)ZrO2 + (4y+2z)LnF3 = 2(ZrO2)x(Ln2O3)z + 3yZrF4) where x, y and z represent the stabilizing composition at which the homogeneous solid solution with the fluorite structure is formed, and x + y + z + = 1. This reactions begins to take place at about 600 C and is completed by firing at temperatures ranging from 1000 to 1300 °C for a few hours in an argon atmosphere.  相似文献   

11.
A new class of nonstoichiometric layered ternary rare-earth tin antimonides, RESn(x)()Sb(2) (RE = La, Ce, Pr, Nd, Sm), has been synthesized through reaction of the elements at 950 degrees C. In the lanthanum series LaSn(x)()Sb(2), tin can be incorporated from a maximum content of x approximately 0.7 or 0.8 to as low as x approximately 0.10. The structure of lanthanum tin diantimonide with the maximum tin content, LaSn(0.75)Sb(2), has been determined by single-crystal X-ray diffraction methods. It crystallizes in the orthorhombic space group -Cmcm with a = 4.2425(5) ?, b = 23.121(2) ?, c = 4.5053(6) ?, and Z = 4. The isostructural rare-earth analogues were characterized by powder X-ray diffraction. The structure of LaSn(0.75)Sb(2) comprises layers of composition "LaSb(2)" in which La atoms are coordinated by Sb atoms in a square-antiprismatic geometry. Between these layers reside chains of Sn atoms distributed over three crystallographically independent sites, each partially occupied at about 20%. The structure of LaSn(0.75)Sb(2) can be regarded as resulting from the excision of RE-Sb and Sb-Sb bonds in the related structures of binary rare-earth diantimonides, RESb(2), and then intercalation of Sn atoms between layers.  相似文献   

12.
The study of some transition metals (M) and amoxicillin trihydrate (ACT) ligand complexes (M-ACT) that formed in solution involved the spectrophotometric determination of stoichiometric ratios and their stability constants and these ratios were found to be M:ACT = 1:1, 1:2 and 2:1 in some instances. The calculated stability constants of these chelates, under selected optimum conditions, using molar ratio method have values ranging from K(f) = 10(7) to 10(14). These data were confirmed by calculations of their free energy of formation deltaG, which corresponded to their high stabilities. The separated solid complexes were studied using elemental analyses, IR, reflectance spectra, magnetic measurements, mass spectra and thermal analyses (TGA and DTA). The proposed general formulae of these complexes were found to be ML(H2O)w(H2O)x(OH)y(Cl)2, where M = Fe(II), Co(III), w = 0, x = 2, y = 1, z = 0; M = Co(II), w = 0, x = 1, y = 0, z = 1; M = Fe(III), w = 0, x = 1, y = 2, z = 0; M = Ni(II), Cu(II) and Zn(II), w = 2, x = 0, y = 1, z = 0, where w = water of crystallization, x = coordinated water, y = coordinated OH(-) and z = Cl- in the outer sphere of the complex. The IR spectra show a shift of nu(NH) (2968 cm(-1)) to 2984-2999 cm(-1) of imino group of the ligand ACT and the absence of nu(CO) (beta-lactame) band at 1774 cm(-1) and the appearance of the band at 1605-1523 cm(-1) in all complexes suggest that 6,7-enolization takes place before coordination of the ligand to the metal ions. The bands of M-N (at 625-520 cm(-1)) and of M-O (at 889-7550 cm(-1)) proved the bond of N (of amino and imino groups) and O of C-O group of the ligand to the metal ions. The reflectance spectra and room temperature magnetic measurements refer to octahedral complexes of Fe(II) and Fe(III); square planner form of Co(II), reduced Co(III), Ni(II) and Cu(II)-ACT complexes but tetrahedral form of Zn-ACT complex. The thermal degradation of these complexes is confirmed by their mass spectral fragmentation. These data confirmed the proposed structural and general formulae of these complexes.  相似文献   

13.
氟脲嘧啶(Fluorouracil,FuH)是常用代谢类抗癌药,但毒性稍大。某些希土化合物能通过干扰癌细胞遗传基因达到抗癌作用,且毒性很低。希土与FuH的配合物中希土离子与配体产生协同作用,使配合物具有更好的选择性,并且毒性低而药效强[1]。因此研究希土化合物与FuH的配合物有现实意义。曾研究过的有关配合物有:过渡元素FuH[2]、Pr3+FuH[3]、Nd3+FuH[4]、希土邻菲罗啉FuH[5]。除过渡元素外,其他均在非水溶剂中,在水溶液中合成La3+FuH配合物未见报道。采用高…  相似文献   

14.
Skutterudites are interesting compounds for thermoelectric applications. The main drawback in the synthesis of skutterudites by solidification of the melt is the occurrence of two peritectic reactions requiring long annealing times to form a single phase. Aim of this work is to investigate an alternative route for synthesis, based on rapid solidification by planar flow casting. The effect of cooling rate on phases formation and composition, as well as on structure, microstructure and mechanical properties of the filled Smy(FexNi1-x)4Sb12 (x = 0.45, 0.50, 0.70, 1) skutterudites was studied. Conversely to slowly cooled ingots, rapidly quenched ribbons show skutterudite as the main phase, suggesting that deep undercooling of the liquid prevents the nucleation of high temperature phases, such as (Fe,Ni)Sb and (Fe,Ni)Sb2. In as-quenched samples, a slightly out of equilibrium Sm content is revealed, which does not alter the position of the p/n boundary; nevertheless, it exerts an influence on crystallographic properties, such as the cell parameter and the shape of the Sb4 rings in the structure. As-quenched ribbons show a fine microstructure of the skutterudite phase (grain size of 2–20 μm), which only moderately coarsens after annealing at 873 K for 4 days. Vickers microhardness values (350–400 HV) of the skutterudite phase in as-quenched ribbons are affected by the presence of softer phases (i.e. Sb), which are homogeneously and finely dispersed within the sample. The skutterudite hardens after annealing as a consequence of a moderate grain growth, which limits the matrix effect due to the presence of additional phases.  相似文献   

15.
The synthesis of filled skutterudite compounds (Ce or Y)yFexCo4-xSb12, through a solid state reaction using chloride of Ce or Y, high purity powder of Co, Fe, and Sb as starting materials, was investigated. (Ce or Y)yFexCo4-xSb12 (x = 0 1.0,y = 0 0.15) compounds were obtained at 850 1 123 K. The results of Rietveld analysis demonstrate that (Ce or Y)yFexCo4-xSb12 synthesized by a solid state reaction possesses a filled skutterudite structure. The filling fraction of Ce or Y obtained by Rietveld analysis agrees well with the composition obtained by chemical analysis. The lattice constant of CeyFexCo4-xSb12 increases with increasing substitution of Fe at Co sites, and with an increasing Ce filling fraction in the Sb-dodecahedron voids. The lattice thermal conductivity of (Ce or Y)yFexCo4-xSb12 decreases significantly with an increasing Ce or Y filling fraction in the voids and with substitution of Fe at Co sites.  相似文献   

16.
The mechanism and kinetics of single-walled carbon nanotube (SWNT) nucleation from Fe- and Ni-carbide nanoparticle precursors have been investigated using quantum chemical molecular dynamics (QM/MD) methods. The dependence of the nucleation mechanism and its kinetics on environmental factors, including temperature and metal-carbide carbon concentration, has also been elucidated. It was observed that SWNT nucleation occurred via three distinct stages, viz. the precipitation of the carbon from the metal-carbide, the formation of a "surface/subsurface" carbide intermediate species, and finally the formation of a nascent sp(2)-hybidrized carbon structure supported by the metal catalyst. The SWNT cap nucleation mechanism itself was unaffected by carbon concentration and/or temperature. However, the kinetics of SWNT nucleation exhibited distinct dependences on these same factors. In particular, SWNT nucleation from Ni(x)C(y) nanoparticles proceeded more favorably compared to nucleation from Fe(x)C(y) nanoparticles. Although SWNT nucleation from Fe(x)C(y) and Ni(x)C(y) nanoparticle precursors occurred via an identical route, the ultimate outcomes of these processes also differed substantially. Explicitly, the Ni(x)-supported sp(2)-hybridized carbon structures tended to encapsulate the catalyst particle itself, whereas the Fe(x)-supported structures tended to form isolated SWNT cap structures on the catalyst surface. These differences in SWNT nucleation kinetics were attributed directly to the relative strengths of the metal-carbon interaction, which also dictates the precipitation of carbon from the nanoparticle bulk and the longevity of the resultant surface/subsurface carbide species. The stability of the surface/subsurface carbide was also influenced by the phase of the nanoparticle itself. The observations agree well with experimentally available data for SWNT growth on iron and nickel catalyst particles.  相似文献   

17.
通过高温固相法合成了一系列Sr3La2-xGe3O12:xSm^3+(0≤x≤0.04)红色荧光粉,并对样品的形貌、元素组成、晶体结构、发光性能及热稳定性进行了探究。结果表明:样品Sr3La2Ge3O12:xSm^3+为较宽尺寸分布的颗粒,且结构中仅含有Sr、La、Ge、O、Sm等元素。样品Sr3La1.97Ge3O12:0.03Sm^3+的Rietveld结构精修图与实测XRD图完全吻合,具有六方晶系结构。漫反射测试结果显示基质Sr3La2Ge3O12的带宽为5.54 eV,属于宽带隙材料。在404 nm激发下,样品Sr3La2-xGe3O12:xSm^3+(0≤x≤0.04)的最大发射峰位于601nm处,属于Sm^3+的6H5/2→4L13/2能级跃迁。此外,样品Sr3La1.97Ge3O12:0.03Sm^3+的发光性能最佳,其CIE色坐标为(0.5321,0.4601),色纯度高达94.2%,在298-473 K范围内具有较好的热稳定性,测试温度达到423 K时发射强度仍为室温时的81.6%。  相似文献   

18.
This paper concerns the electrochemical atom-by-atom growth of VA-VIA compound semiconductor thin film superlattice structures using electrochemical atomic layer epitaxy. The combination of the Bi2Te3 and Sb2Te3 programs and Bi2Te3/Sb2Te3 thin film superlattice with 18 periods, where each period involved 21 cycles of Bi2Te3 followed by 21 cycles of Sb2Te3, is reported here. According to the angular distance between the satellite and the Bragg peak, a period of 23 nm for the superlattice was indicated from the X-ray diffraction (XRD) spectrum. An overall composition of Bi 0.25Sb0.16Te0.58, suggesting the 2:3 stoichiometric ratio of total content of Bi and Sb to Te, as expected for the format of the Bi2Te3/Sb2Te3 compound, was further verified by energy dispersive X-ray quantitative analysis. Both field-emission scanning electron microscopy and XRD data indicated the deposit grows by a complex mechanism involving some 3D nucleation and growth in parallel with underpotential deposition. The optical band gap of the deposited superlattice film was determined as 0.15 eV by Fourier transform infrared spectroscopy and depicts an allowed direct type of transition. Raman spectrum observation with annealed and unannealed superlattice sample showed that the LIF mode has presented, suggesting a perfect AB/CB bonding in the superlattice interface.  相似文献   

19.
用密度泛函理论PBE0法计算配合物[Fe(CO)x(Ph2Ppy)y(HgCl2)z](1: x=4, y=1, z=0; 2: x=3, y=2, z=0; 3: x=4, y=1, z=1; 4: x=3, y=2, z=1; 5: x=4, y=1, z=2; 6: x=3, y=2, z=2)的几何构型, 用PBE0-GIAO法计算配合物1~6的31P化学位移. 计算结果表明, 含2个Ph2Ppy的配合物5和6的Fe—Hg相互作用略大于含单个Ph2Ppy的配合物3和4. 含2个HgCl2的配合物4和6存在Fe—Hg σ键, 比含单个HgCl2的配合物3和5的Fe—Hg相互作用强, 配合物3和5的Fe—Hg相互作用以Fe→Hg和Fe←Hg离域为主. 配合物3中Fe的负电荷比5的小, 故配合物5的Fe—Hg相互作用比配合物3的强且Fe→Hg离域比较显著, 而配合物3的Fe←Hg离域更显著. Fe—Hg相互作用增大了双核配合物中P核周围的电子密度, 其31P化学位移比相应的单核配合物小, 且含2个HgCl2的双核配合物的31P化学位移更小. 含单个Ph2Ppy的配合物的31P化学位移小于含2个Ph2Ppy的配合物.  相似文献   

20.
We present an innovative wet-chemistry-assisted nanotube-substitution reaction approach for the highly efficient synthesis of boron- and nitrogen-codoped single-walled carbon nanotubes (B(x)C(y)N(z)-SWNTs) in bulk quantities. The as-synthesized ternary system B(x)C(y)N(z)-SWNTs are of high purity and quality and have fairly homogeneous B and N dopant concentrations. Electrical transport measurements on SWNT-network thin-film transistors revealed that the B(x)C(y)N(z)-SWNTs were composed primarily of the semiconducting nanotubes, in contrast to the starting pristine C-SWNTs, which consisted of a heterogeneous mixture of both semiconducting and metallic types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号