首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hopf-flip bifurcations of vibratory systems with impacts   总被引:2,自引:1,他引:1  
Two vibro-impact systems are considered. The period n single-impact motions and Poincaré maps of the vibro-impact systems are derived analytically. Stability and local bifurcations of single-impact periodic motions are analyzed by using the Poincaré maps. A center manifold theorem technique is applied to reduce the Poincaré map to a three-dimensional one, and the normal form map associated with Hopf-flip bifurcation is obtained. It is found that near the point of codim 2 bifurcation there exists not only Hopf bifurcation of period one single-impact motion, but also Hopf bifurcation of period two double-impact motion. Period doubling bifurcation of period one single-impact motion is commonly existent near the point of codim 2 bifurcation. However, no period doubling cascade emerges due to change of the type of period two fixed points and occurrence of Hopf bifurcation associated with period two fixed points. The results from simulation shows that there exists an interest torus doubling bifurcation occurring near the value of Hopf-flip bifurcation. The torus doubling bifurcation makes the quasi-periodic attractor associated with period one single-impact motion transit to the other quasi-periodic attractor represented by two attracting closed circles. The torus bifurcation is qualitatively different from the typical torus doubling bifurcation occurring in the vibro-impact systems.  相似文献   

2.
We investigate the dynamics of a sinusoidally driven ferromagnetic martensitic ribbon by adopting a recently introduced model that involves strain and magnetization as order parameters. Retaining only the dominant mode of excitation we reduce the coupled set of partial differential equations for strain and magnetization to a set of coupled ordinary nonlinear equations for the strain and magnetization amplitudes. The equation for the strain amplitude takes the form of parametrically driven oscillator. Finite strain amplitude can only be induced beyond a critical value of the strength of the magnetic field. Chaotic response is seen for a range of values of all the physically interesting parameters. The nature of the bifurcations depends on the choice of temperature relative to the ordering of the Curie and the martensite transformation temperatures. We have studied the nature of response as a function of the strength and frequency of the magnetic field, and magneto-elastic coupling. In general, the bifurcation diagrams with respect to these parameters do not follow any standard route. The rich dynamics exhibited by the model is further illustrated by the presence of mixed mode oscillations seen for low frequencies. The geometric structure of the mixed mode oscillations in the phase space has an unusual deep crater structure with an outer and inner cone on which the orbits circulate. We suggest that these features should be seen in experiments on driven magneto-martensitic ribbons.  相似文献   

3.
In this paper, we study dynamics of a prey-predator system under the impulsive control. Sufficient conditions of the existence and the stability of semi-trivial periodic solutions are obtained by using the analogue of the Poincaré criterion. It is shown that the positive periodic solution bifurcates from the semi-trivial periodic solution through a transcritical bifurcation. A strategy of impulsive state feedback control is suggested to ensure the persistence of two species. Furthermore, a steady positive period-2 solution bifurcates from the positive periodic solution by the flip bifurcation, and the chaotic solution is generated via a cascade of flip bifurcations. Numerical simulations are also illustrated which agree well with our theoretical analysis.  相似文献   

4.
A bifurcation analysis is undertaken for a discrete-time Hopfield neural network of two neurons with two delays, two internal decays and no self-connections, choosing the product of the interconnection coefficients as the characteristic parameter for the system. The stability domain of the null solution is found, the values of the characteristic parameter for which bifurcations occur at the origin are identified, and the existence of Fold/Cusp, Neimark–Sacker and Flip bifurcations is proved. All these bifurcations are analyzed by applying the center manifold theorem and the normal form theory. It is shown that the dynamics in a neighborhood of the null solution become more and more complex as the characteristic parameter grows in magnitude and passes through the bifurcation values. Under certain conditions, it is proved that if the magnitudes of the interconnection coefficients are large enough, the neural network exhibits Marotto’s chaotic behavior.   相似文献   

5.
Chaos and chaos synchronization of the centrifugal flywheel governor system are studied in this paper. By mechanics analyzing, the dynamical equation of the centrifugal flywheel governor system is established. Because of the non-linear terms of the system, the system exhibits both regular and chaotic motions. The characteristic of chaotic attractors of the system is presented by the phase portraits and power spectra. The evolution from Hopf bifurcation to chaos is shown by the bifurcation diagrams and a series of Poincaré sections under different sets of system parameters, and the bifurcation diagrams are verified by the related Lyapunov exponent spectra. This letter addresses control for the chaos synchronization of feedback control laws in two coupled non-autonomous chaotic systems with three different coupling terms, which is demonstrated and verified by Lyapunov exponent spectra and phase portraits. Finally, numerical simulations are presented to show the effectiveness of the proposed chaos synchronization scheme.  相似文献   

6.
Passive walking emerges autonomously on a slight slope without an external input of energy. It is known that the walking motion on a steep slope evolves into a chaotic motion. In this paper a biped model for walking and running is presented, and a strategy is proposed to expand the range of stable passive walking by using a chaos-control technique based on the Ott?–?Grebogi?–?Yorke method. The resultant controller is a discrete type so that the input value changes at every step, and the generated walking motion is kept non-chaotic. Fast walking on a steep slope is achieved, and pseudorunning has also been realized in simulations. By adding an input to the biped model, in which the input corresponds to the effect of the artificial gravity field, it has been verified that pseudorunning can be realized on level ground.  相似文献   

7.
8.
In this paper, we develop Kaplan-Yorke's method and consider the existence of periodic solutions for delay differential equations with two delays. Especially, we study Hopf and saddle-node bifurcations of periodic solutions for the equation with parameters, and give conditions under which the bifurcations occur.  相似文献   

9.
In this paper, a biochemical model with the impulsive perturbations is considered. By using the Floquet theorem, we find the boundary-periodic solution is asymptotically stable if the impulsive period is larger than a critical value. On the contrary, it is unstable if the impulsive period is less than the critical value. The problem of finding nontrivial periodic solutions is reduced to showing the existence of the nontrivial fixed points for the associated stroboscopic mapping of time snapshot equal to the common period of input. It is then shown that once a threshold condition is reached, a stable nontrivial periodic solution emerges via a supercritical bifurcation. Furthermore, influences of the impulsive input on the inherent oscillations are studied numerically, which shows the rich dynamics in the positive octant.  相似文献   

10.
In this paper, we qualitatively study periodic cusp waves to a class of generalized short pulse equations, which are of the general form of three special generalized short pulse equations, from the perspective of dynamical systems. We show the existence of smooth periodic waves, periodic cusp wave and compactons, obtain exact expression of periodic cusp wave and illustrate the limiting process of periodic cusp wave from smooth periodic waves.  相似文献   

11.
The bifurcation methods of differential equations are employed to investigate traveling waves of the oceanic currents motion equations. The sufficient conditions to guarantee the existence of different kinds of bounded traveling wave solutions are rigorously determined. Further, due to the existence of a singular line in the corresponding traveling wave system, the smooth periodic traveling wave solutions gradually lose their smoothness and evolve to periodic cusp waves. The results of numerical simulation accord with theoretical analysis.  相似文献   

12.
Lotka–Volterra equations (LVEs) for mutualisms predict that when mutualistic effects between species are strong, population sizes of the species increase infinitely, which is the so-called divergence problem. Although many models have been established to avoid the problem, most of them are rather complicated. This paper considers a mutualism model of two species, which is derived from reactions on lattice and has a form similar to that of LVEs. Population sizes in the model will not increase infinitely since there is interspecific competition for sites on the lattice. Global dynamics of the model demonstrate essential features of mutualisms and basic mechanisms by which the mutualisms can lead to persistence/extinction of mutualists. Our analysis not only confirms typical dynamics obtained by numerical simulations in a previous work, but also exhibits a new one. Saddle-node bifurcation, transcritical bifurcation and pitchfork bifurcation in the system are demonstrated, while a relationship between saddle-node bifurcation and pitchfork bifurcation in the model is displayed. Numerical simulations validate and extend our conclusions.  相似文献   

13.
The authors investigate the global behavior of the solutions of the difference equation xn+1=axn-1xn-k/bxn-p+cxn-q,n=0,1,…where the initial conditions x-r, x-r+1, x-r+2,… , x0 are arbitrary positive real numbers, r = max{l, k,p, q) is a nonnegative integer and a, b, c are positive constants. Some special cases of this equation are also studied in this paper.  相似文献   

14.
Bifurcations are discussed by the criterion of top Lyapunov exponent. Based on the local map and Kaminski’s algorithms, a general formulation of the top Lyapunov exponents is proposed for non-linear vibro-impact oscillators with Gaussian white noise perturbation. The analytical results are verified by phase portraits and bifurcation diagrams for a classical stochastic Duffing vibro-impact oscillator. Both results are consistent.  相似文献   

15.
This paper is concerned with bifurcations of equilibria and the chaotic dynamics of a food web containing a bottom prey X, two competing predators Y and Z on X, and a super-predator W only on Y. Conditions for the existence of all equilibria and the stability properties of most equilibria are derived. A two-dimensional bifurcation diagram with the aid of a numerical method for identifying bifurcation curves is constructed to show the bifurcations of equilibria. We prove that the dynamical system possesses a line segment of degenerate steady states for the parameter values on a bifurcation line in the bifurcation diagram. Numerical simulations show that these degenerate steady states can help to switch the stabilities between two far away equilibria when the system crosses this bifurcation line. Some observations concerned with chaotic dynamics are also made via numerical simulations. Different routes to chaos are found in the system. Relevant calculations of Lyapunov exponents and power spectra are included to support the chaotic properties.  相似文献   

16.
We consider a one-parameter family of delay differential equations which has been proposed as a model for a prize and prove that at a critical parameter where the linearization at equilibrium has a double zero eigenvalue periodic solutions bifurcate off with periods descending from infinity. AMS Subject Classification. 34K18,34K13,37G15  相似文献   

17.
In this paper we develop Kaplan-Yorke's method and consider the existence of periodic solutions for some delay differential equations. We especially study Hopf and saddle-node bifurcations of periodic solutions with certain periods for these equations with parameters, and give conditions under which the bifurcations occur. We also give application examples and find that Hopf and saddle-node bifurcations often occur infinitely many times.  相似文献   

18.
This paper presents a 4D new hyperchaotic system which is constructed by a linear controller to a 3D new chaotic system with one saddle and two stable node-foci. Some complex dynamical behaviors such as ultimate boundedness, chaos and hyperchaos of the simple 4D autonomous system are investigated and analyzed. The corresponding bounded hyperchaotic and chaotic attractor is first numerically verified through investigating phase trajectories, Lyapunove exponents, bifurcation path, analysis of power spectrum and Poincaré projections. Finally, two complete mathematical characterizations for 4D Hopf bifurcation are rigorous derived and studied.  相似文献   

19.
The linear dispersive relation of the travelling-wave solution is investigated for cubic G-L equation. Moreover, the relation among the parameter c0, the amplitude |μo| and the most unstable wave number q is discussed. Then convergence of an unconditionally stable, explicit pseudo-spectral scheme is proved by energy estimates. Finally, by using the proposed scheme, the chaotic attractor, bifurcation structure and asymptotic dynamics are obtained. The results show there exist two different types of chaotic attractors for the most unstable wave number qo and was fixed the amplitude |μo| in the same one system.  相似文献   

20.
We propose a novel mathematical model of a vibrating multi-layer Timoshenko-type beam. We show that the introduced model essentially changes the type of partial differential equations allowing inclusion of rotational inertial effects. We illustrate and discuss the influence of boundary conditions, the beam layers and parameters of the external load on the non-linear dynamics of this composite beam including a study of its regular, bifurcation and chaotic behavior.The originally derived infinite problem is reduced to the finite one using either Finite Difference Method (FDM) or Finite Element Method (FEM) which guarantees validity and reliability of the obtained numerical results. In addition, a comparative study is carried out aiming at a proper choice of the efficient wavelet transform. In particular, scenarios of transition into chaos are studied putting emphasis on novel phenomena. Charts of the system dynamical regimes are also constructed with respect to the control parameters regarding thickness and composition of the beam layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号