首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This paper studies the effect of rotation on the turbulent boundary-layer flow in a rotating duct with a square cross section by using hot-wire. The experiments were conducted with the Reynolds numbers, based on the duct's hydraulic diameter (D = 80 mm) equaling 19,000. The rotation numbers (Ro) studied ranged from 0 to 0.362. Hot-wire measurements of the flow field were made at four cross sections of the rotating duct. The effects of rotation on velocity profile, semi-logarithmic mean velocity profile, and wall shear stress are discussed in this paper. Results obtained show the velocity deficit about the leading surface of the rotating duct, created by the secondary flows induced by the Coriolis force, to not increase monotonically with the increase in the Rotation number. Results obtained also show the effects of rotation to penetrate into the logarithm region, and the flow near the leading surface tends to laminarize. In this study, a correction factor is developed for logarithmic law to account for the effects of rotation, which can be used in CFD studies of rotating ducts that use wall functions.  相似文献   

2.
刘宁 《力学学报》2011,43(1):24-31
本文用大涡模拟预测了以不同转速做展向旋转的槽道湍流流动,统计平均的流向速度型在壁面附近与已有实验数据符合很好,在通道中部的预测差异也能给出合理解释,对比不同转速的计算结果,表明展向旋转通道的湍流应力和壁面摩擦力在压力面附近提高、在吸力面附近降低,这些高阶湍流统计量的变化规律可以结合湍流应力输运方程加以解释,漩涡识别技术显示了近壁条带结构,其形态和猝发率受旋转附加力的影响发生改变,进而影响壁面摩擦速度的数值和分布,进一步考察垂直流动方向的截面内速度分布,发现旋转引起了垂直壁面方向的流动,形成正负相间排列的流向涡对,并随着转速的增加向压力面靠近。   相似文献   

3.
The turbulent velocity field over the rib-roughened wall of an orthogonally rotating channel is investigated by means of two-dimensional particle image velocimetry (PIV). The flow direction is outward, with a bulk Reynolds number of 1.5 × 104 and a rotation number ranging from 0.3 to 0.38. The measurements are obtained along the wall-normal/streamwise plane at mid-span. The PIV system rotates with the channel, allowing to measure directly the relative flow velocity with high spatial resolution. Coriolis forces affect the stability of the boundary layer and free shear layer. Due to the different levels of shear layer entrainment, the reattachment point is moved downstream (upstream) under stabilizing (destabilizing) rotation, with respect to the stationary case. Further increase in rotation number pushes further the reattachment point in stabilizing rotation, but does not change the recirculation length in destabilizing rotation. Turbulent activity is inhibited along the leading wall, both in the boundary layer and in the separated shear layer; the opposite is true along the trailing wall. Coriolis forces affect indirectly the production of turbulent kinetic energy via the Reynolds shear stresses and the mean shear. Two-point correlation is used to characterize the coherent motion of the separated shear layer. Destabilizing rotation is found to promote large-scale coherent motions and accordingly leads to larger integral length scales; on the other hand, the spanwise vortices created in the separating shear layer downstream of the rib are less organized and tend to be disrupted by the three-dimensional turbulence promoted by the rotation. The latter observation is consistent with the distributions of span-wise vortices detected in instantaneous flow realizations.  相似文献   

4.
A new approach was taken to understand the flow behavior of concentrated particle suspensions in pressure-driven capillary flow. The flow of concentrated alumina suspensions in a slit channel was visualized and quantitatively analyzed with modified capillary rheometer. The suspensions showed complex flow behaviors; unique solid–liquid transition and shear banding. At low flow rates, 55 vol% alumina suspension showed a unique transient flow behavior; there was no flow at first and continuous change of flow profile was observed with time. At low shear rates in particular, the suspensions exhibited shear-banded flow profile which could be divided into three regions: the region with low flow rate near the wall, the region with rapid increase of flow velocity to maximum, and the region of velocity plateau. Based on both flow visualization and measurement of shear stress, it was found that the shear-banded flow profile in pressure-driven slit channel flow was strongly correlated with shear stress. The banding in pressure-driven flow was different from that in Couette flow. The banding of concentrated alumina suspensions was unique in that sluggish velocity profile was pronounced and two inflection points in velocity profile was exhibited. In this study, shear banding of concentrated alumina suspensions in slit channel flow was visualized and quantitatively analyzed. We expect that this approach can be an effective method to understand the flow behavior of particulate suspensions in the pressure-driven flow which is typical in industrial processing.  相似文献   

5.
A fully-developed turbulent pipe flow is allowed to pass through a rotating pipe section, whose axis of rotation coincides with the pipe axis. At the exit end of the rotating section, the flow passes into a stationary pipe. As a result of the relaxation of surface rotation, the turbulent flow near the pipe wall is affected by extra turbulence production created by the large circumferential shear strain set up by the rapid decrease of the rotational velocity to zero at the wall. However, the flow in the most part of the pipe is absent of this extra turbulence production because the circumferential strain is zero as a result of the solid-body rotation imparted to the flow by the rotating pipe section. The combined effect of these two phenomena on the flow is investigated in detail using hot-wire anemometry techniques. Both mean and turbulence fields are measured, together with the wall shear and the turbulent burst behavior at the wall. A number of experiments at different rotational speeds are carried out. Therefore, the effects of rotation on the behavior of wall shear, turbulent burst at the wall, turbulence production and the near-wall flow can be documented and analysed in detail.  相似文献   

6.
An analysis is performed to present a new self-similar solution of unsteady mixed convection boundary layer flow in the forward stagnation point region of a rotating sphere where the free stream velocity and the angular velocity of the rotating sphere vary continuously with time. It is shown that a self-similar solution is possible when the free stream velocity varies inversely with time. Both constant wall temperature and constant heat flux conditions have been considered in the present study. The system of ordinary differential equations governing the flow have been solved numerically using an implicit finite difference scheme in combination with a quasilinearization technique. It is observed that the surface shear stresses and the surface heat transfer parameters increase with the acceleration and rotation parameters. For a certain value of the acceleration parameter, the surface shear stress in x-direction vanishes and due to further reduction in the value of the acceleration parameter, reverse flow occurs in the x–component of the velocity profiles. The effect of buoyancy parameter is to increase the surface heat transfer rate for buoyancy assisting flow and to decrease it for buoyancy opposing flow. For a fixed buoyancy force, heating by constant heat flux yields a higher value of surface heat transfer rate than heating by constant wall temperature.  相似文献   

7.
This paper presents the results of experimental and numerical investigations of the problem of turbulent natural convection in a converging-plate vertical channel. The channel has two isothermally heated inclined walls and two adiabatic vertical side walls. The parameters involved in this study are the channel geometry represented by the channel width at exit, the inclination of the heated walls and the temperature difference between the heated walls and the ambient. The investigation covered modified Rayleigh numbers up to 108 in the computational study and up to 9.3 × 106 in the experimental work. The experimental measurements focused on the velocity field and were carried out using a PIV system and included measurements of the mean velocity profiles as well as the root-mean-square velocity and shear stress profiles. The experiments were conducted for an inclination angle of 30°, a gap width of 10 mm and two temperature differences (∆T=25.4°C and 49.8°C). The velocity profiles in the lower part of the channel indicated the presence of two distinct layers. The first layer is adjacent to the heated plate and driven by buoyancy forces while the second layer extends from the point of maximum velocity to the channel center plane and driven mainly by shear forces. The velocity profile at the upper portion of the channel has shown the merging of the two boundary layers growing over the two heated walls. The measured values of the Reynolds shear stress and root mean square of the horizontal and vertical velocity fluctuation components have reached their maximum near the wall while having smaller values in the core region. The computational results have shown that the average Nusselt number increases approximately linearly with the increase of the modified Rayleigh number when plotted on log–log scale. The variation of the local Nusselt number indicated infinite values at the channel inlet (leading edge effect) and high values at the channel exit (trailing edge effect). For a fixed value of the top channel opening, the increase of the inclination angle tended to reduce flow velocity at the inlet section while changing the flow structure near the heated plates in such a way to create boundary-layer type flow. The maximum value of the average Nusselt number occurs when θ = 0 and decreases with the increase of the inclination angle. On the other hand, the increase of the channel width at exit for the same inclination angle caused a monotonic increase in the flow velocity at the channel inlet.  相似文献   

8.
Three types of turbulence models which account for rotational effects in noninertial frames of reference are evaluated for the case of incompressible, fully developed rotating turbulent channel flow. The different types of models are a Coroiolis-modified eddy-viscosity model, a realizable nonlinear eddy-viscosity model, and an algebraic stress model which accounts for dissipation rate anisotropies. A direct numerical simulation of a rotating channel flow is used for the validation of the turbulence models. This simulation differs from previous studies in that significantly higher rotation numbers are investigated. Flows at these higher rotation numbers are characterized by a relaminarization on the cyclonic or suction side of the channel, and a linear velocity profile on the anticyclonic or pressure side of the channel. The predictive performance of the three types of models are examined in detail, and formulation deficiencies are identified which cause poor predictive performance for some of the models. Criteria are identified which allow for accurate prediction of such flows by algebraic stress models and their corresponding Reynolds stress formulations.  相似文献   

9.
Two dimensional time accurate PIV measurements of the flow between pressure and suction side at different spanwise positions of a rotating channel are presented. The Reynolds and Rotation numbers are representative for the flow in radial impellers of micro gas turbines. Superposition of the 2D results at the different spanwise positions provides a quasi-3D view of the flow and illustrates the impact of Coriolis forces on the 3D flow structure. It is shown that the inlet flow is little affected by rotation. An increasing/decreasing boundary layer thickness is reported on the suction/pressure side wall halfway between the channel inlet and outlet. The turbulence intensity moves away from the suction side wall and remains close to the pressure side wall. The instantaneous measurements at mid-height of the rotating channel reveal the presence of hairpin vortices in the pressure side boundary layer and symmetric vortices near the suction side. Hairpin vortices occur in rotation in the pressure and in the suction side, for the measurement plane close to the channel bottom wall.  相似文献   

10.
弹箭设计、弹道计算和稳定性研究都需要准确预测旋转弹箭的马格努斯力和力矩,国内针对旋转弹箭气动特性的数值模拟工作集中在旋成体上,对带翼外形进行完全时间相关的非定常研究鲜有见到;国外虽然有对带翼外形开展研究,但以验证方法为主,对湍流模型在复杂外形弹箭旋转中的研究未曾见到.采用完全时间相关的非定常N-S方程,对带翼弹箭开展计算,对比了一方程SA(Spalart-Allmaras)湍流模型和两方程k-!SST(shear-stress-transport)湍流模型对马格努斯效应产生的影响,并分析了旋转导致的边界层和涡非对称畸变,以及周向压力分布和剪切应力分布非对称畸变.结果表明:旋转引起的物面流场参数变化主要体现在弹体中后部,SA和SST湍流模型预测的全弹马格努斯特性与阿诺德工程发展中心(Arnold Engineering Development Center,AEDC)实验及陆军研究实验室(Army Research Laboratory,ARL)的计算结果一致性很好,对动导数而言两湍流模型计算精度相当.两湍流模型计算的弹体左侧流场参数差异比右侧大,分析认为正向旋转使左侧壁面速度方向与来流速度相反,相互阻碍使气流脉动效应更强.壁面附近湍流黏性系数SA结果大于SST结果,y=0截面物面压力SA结果小于SST结果、最大相差6%,摩阻系数SA结果大于SST结果、最大相差35%.SA对旋转产生的分离抑制作用强于SST.  相似文献   

11.
旋转圆柱绕流流场特性分析   总被引:2,自引:2,他引:0  
徐一航  陈少松 《力学学报》2021,53(7):1900-1911
对雷诺数Re = 20000 ~ 90000、相对转速ɑ = 0 ~ 0.72的旋转圆柱后方流场进行了实验测量, 分析了旋转圆柱后方不同剖面处的速度分布规律和湍流度分布规律. 采用LES方法对旋转圆柱绕流问题进行了数值模拟, 分析旋转圆柱周围流场特性和自由剪切层变化规律, 最后通过理论模型对流场变化进行分析, 得出如下结论: 当圆柱逆时针旋转时, 同一雷诺数下随着相对转速的增加, 旋转圆柱尾迹区域下方速度突变处的位置随着相对转速的增加而上移, 而上方速度突变处的位置不变, 雷诺数的增加使旋转圆柱尾迹区域下方速度突变处位置有小幅度的下移. 通过数值模拟发现, 圆柱旋转之后, 圆柱后方下侧涡的位置明显上移, 且幅度较大. 下方的自由剪切层有明显的上移, 上方的自由剪切层位置变化较小. 最后通过理论分析发现, 圆柱后侧下方涡位置的上移对圆柱升力影响十分显著, 在高雷诺数、低相对转速的条件下, 旋转圆柱后侧下方涡位置的改变对旋转圆柱的升力、尾流区自由剪切层的变化起到了重要的影响.   相似文献   

12.
The near-wall transport characteristics, inclusive of mass transfer coefficient and wall shear stress, which have a great effect on gas–liquid two-phase flow induced internal corrosion of low alloy pipelines in vertical upward oil and gas mixing transport, have been both mechanistically and experimentally investigated in this paper. Based on the analyses on the hydrodynamic characteristics of an upward slug unit, the mass transfer in the near wall can be divided into four zones, Taylor bubble nose zone, falling liquid film zone, Taylor bubble wake zone and the remaining liquid slug zone; the wall shear stress can be divided into two zones, the positive wall shear stress zone associated with the falling liquid film and the negative wall shear stress zone associated with the liquid slug. Based on the conventional mass transfer and wall shear stress characteristics formulas of single phase liquid full-pipe turbulent flow, corrected normalized mass transfer coefficient formula and wall shear stress formula are proposed. The calculated results are in good agreement with the experimental data. The shear stress and the mass transfer coefficient in the near wall zone are increased with the increase of superficial gas velocity and decreased with the increase of superficial liquid velocity. The mass transfer coefficients in the falling liquid film zone and the wake zone of leading Taylor bubble are lager than those in the Taylor bubble nose zone and the remaining liquid slug zone, and the wall shear stress associated falling liquid film is larger than that associated the liquid slug. The mass transfer coefficient is within 10−3 m/s, and the wall shear stress below 103 Pa. It can be concluded that the alternate wall shear stress due to upward gas–liquid slug flow is considered to be the major cause of the corrosion production film fatigue cracking.  相似文献   

13.
Cetyltrimethyl ammonium chloride (CTAC) surfactant additives, because of their long-life characteristics, can be used as promising drag-reducers in district heating and cooling systems. In the present study we performed both numerical and experimental tests for a 75 ppm CTAC surfactant drag-reducing channel flow. A two-component PIV system was used to measure the instantaneous streamwise and wall-normal velocity components. A Giesekus constitutive equation was adopted to model the extra stress due to the surfactant additives, with the constitutive parameters being determined by well-fitting apparent shear viscosities, as measured by an Advanced Rheometric Expansion System (ARES) rheometer. In the numerical study, we connected the realistic rheological properties with the drag-reduction rate. This is different from previous numerical studies in which the model parameters were set artificially. By performing consistent comparisons between numerical and experimental results, we have obtained an insight into the mechanism of the additive-induced drag-reduction phenomena.

Our simulation showed that the addition of surfactant additives introduces several changes in turbulent flow characteristics: (1) In the viscous sublayer, the mean velocity gradient becomes gentler due to the viscoelastic forces introduced by the additives. The buffer layer becomes expanded and the slope of the velocity profile in the logarithmic layer increases. (2) The locations where the streamwise velocity fluctuation and Reynolds shear stress attain their maximum value shifted from the wall region to the bulk flow region. (3) The root-mean-square velocity fluctuations in the wall-normal direction decrease for the drag-reducing flow. (4) The Reynolds shear stress decreases dramatically and the deficit of the Reynolds shear stress is mainly compensated by the viscoelastic shear stress. (5) The turbulent production becomes much smaller and its peak-value position moves toward the bulk flow region. All of these findings agree qualitatively with experimental measurements.

Regarding flow visualization, the violent streamwise vortices in the near wall region become dramatically suppressed, indicating that the additives weaken the ejection and sweeping motion, and thereby inhibit the generation of turbulence. The reduction in turbulence is accomplished by additive-introduced viscoelastic stress. Surfactant additives have dual effects on frictional drag: (1) introduce viscoelastic shear stress, which increases frictional drag; and (2) dampen the turbulent vortical structures, decrease the turbulent shear stress, and then decrease the frictional drag. Since the second effect is greater than the first one, drag-reduction occurs.  相似文献   


14.
The modification of the near-wall structure is very important for the control of wall turbulence. To ascertain the effect of near-wall modulation on the viscoelastic drag-reduced flow, the modified characteristics of a surfactant solution channel flow were investigated experimentally. The modulation was conducted on the boundary of the channel flow by injecting water from the whole surface of one side of the channel wall. The diffusion process of the injected water was observed by using the planar laser-induced fluorescence technique. The velocity statistics and characteristic structure including the spatial distributions of instantaneous streamwise velocity, swirling strength, and Reynolds shear stress were analyzed based on the velocity vectors acquired in the streamwise wall-normal plane by using the particle imaging velocimetry technique. The results indicated that the disturbance of the injected water was constricted within a finite range very near the dosing wall, and the Reynolds shear stress was increased in this region. However, the eventual drag reduction rate was found to be increased due to a relatively large decrement of viscoelastic shear stress in this near-wall region. Moreover, the flow structure under this modulation presented obvious regional characteristics. In the unstable disturbed region, the mixing of high-speed and low-speed fluids and the motions of ejection and sweep occurred actively. Many clockwise vortex cores were also found to be generated. This characteristic structure was similar to that in the ordinary turbulence of Newtonian fluid. Nevertheless, outside this disturbed region, the structure still maintained the characteristics of the drag-reduced flow with non-Newtonian viscoelastic additives. These results proved that the injected Newtonian fluid associated with the modified stress distribution creates a diverse characteristic structure and subsequent enhanced drag reduction. This investigation can provide the experimental basis for further study of turbulence control.  相似文献   

15.
Turbulent flow in a compound meandering open channel with seminatural cross sections is one of the most complicated turbulent flows as the flow pattern is influenced by the combined action of various forces, such as centrifugal force, pressure, and shear stresses. In this paper, a three‐dimensional (3D) Reynolds stress model (RSM) is adopted to simulate the compound meandering channel flows. Governing equations of the flow are solved numerically with finite‐volume method. The velocity fields, wall shear stresses, and Reynolds stresses are calculated for a range of input conditions. Good agreement between the simulated results and measurements indicates that RSM can successfully predict the complicated flow phenomenon. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Near-wall data for the strongly perturbed flow in a neutrally stable boundary layer encountering a steep, smooth, two-dimensional hill are presented. Observations were made on the centerplane of a water channel at thirteen stations relative to the hill by laser Doppler anemometry. The large reverse flow region that is formed on the lee of the hill was particularly scrutinized through seven measuring stations. Results are presented for the mean and turbulent properties of the flow. Wall shear stress was evaluated through fitting procedures that resorted to the near wall behavior of the velocity profile. Logarithmic fits as well as predictions through the Reynolds stress profiles are also presented.  相似文献   

17.
The boundary layer flow behaviour in a smooth rotating channel with heated walls is measured by particle image velocimetry (PIV). To simulate the real operation environment of an internal coolant channel in a turbine blade, airflow is analysed in a rotating channel, whose four walls are uniformly heated by Indium Tin Oxide (ITO) glass. The flow is measured in the middle plane of the rotating channel with a Reynolds number equal to 10000 and rotation numbers ranging from 0 to 0.52. The results are presented for the boundary layer flow behaviour with and without heated thermal boundary conditions. The buoyancy force generated by the heated walls influences the flow behaviour under rotating conditions. Separated flow occurs, which substantially influences the turbulent flow behaviours. Sometimes, this buoyancy force can determine the flow behaviours. The results also showed that the displacement thickness and the momentum loss thickness present new changes at different radius positions due to the heated thermal boundary conditions. The displacement thicknesses of both the leading and trailing sides with heated walls are both thicker than those of the leading and trailing sides without heated walls. Then, the difference of the boundary layer thickness between these two cases increases with the increase of rotation number. For momentum loss thickness, a sharp drop happens when the rotation number increases to a certain value. At the large radius position, the drop in momentum loss thickness is much greater than that in the small radius position.  相似文献   

18.
An approach to derive turbulent scaling laws based on symmetry analysis is presented. It unifies a large set of scaling laws for the mean velocity of stationary parallel turbulent shear flows. The approach is derived from the Reynolds averaged Navier–Stokes equations, the fluctuation equations, and the velocity product equations, which are the dyad product of the velocity fluctuations with the equations for the velocity fluctuations. For the plane case the results include the logarithmic law of the wall, an algebraic law, the viscous sublayer, the linear region in the centre of a Couette flow and in the centre of a rotating channel flow, and a new exponential mean velocity profile that is found in the mid-wake region of high Reynolds number flat-plate boundary layers. The algebraic scaling law is confirmed in both the centre and the near wall regions in both experimental and DNS data of turbulent channel flows. For a non-rotating and a moderately rotating pipe about its axis an algebraic law was found for the axial and the azimuthal velocity near the pipe-axis with both laws having equal scaling exponents. In case of a rapidly rotating pipe, a new logarithmic scaling law for the axial velocity is developed. The key elements of the entire analysis are two scaling symmetries and Galilean invariance. Combining the scaling symmetries leads to the variety of different scaling laws. Galilean invariance is crucial for all of them. It has been demonstrated that two-equation models such as the k– model are not consistent with most of the new turbulent scaling laws.  相似文献   

19.
The unsteady flow and heat transfer of a viscous incompressible electrically conducting fluid in the forward stagnation point region of a rotating sphere in the presence of a magnetic field are investigated in this study. The unsteadiness in the flow field is caused by the velocity at the edge of the boundary layer and the angular velocity of the rotating sphere, both varying continuously with time. The system of ordinary differential equations governing the flow is solved numerically. For some particular cases, an analytical solution is also obtained. It is found that the surface shear stresses in x- and y-directions and the surface heat transfer increase with the acceleration, the magnetic and the rotation parameters whether the magnetic field is fixed relative to the fluid or body, except that the surface shear stress in x-direction and the surface heat transfer decrease with increasing the magnetic parameter when the magnetic field is fixed relative to the body. For a certain value of the acceleration parameter, the surface shear stress in the x-direction vanishes while the surface shear stress in the y-direction and the surface heat transfer remain finite. Also, below a certain value of the acceleration parameter, reverse flow occurs in the x-component of the velocity profile. Received on 18 May 1998  相似文献   

20.
旋转流场中的流体流动比较复杂,特别是在高转速、微尺度工况时,流场中的流体流态及其判断方法缺乏完备的理论模型.选择干气密封作为高速旋转流场的研究对象,以开启力和泄漏量作为宏观特性表征指标参数,选择剪切(周向)、径向及轴向速度分量对速度流场进行介观表述,通过Fluent软件仿真计算大跨距转速(低转速至超高转速)时的宏观、介观指标参数,研究密封性能指标参数与速度场间的内在逻辑关系.结果表明:低速旋转流场中的轴向速度分量较小,可忽略不计,转速升高会促使轴向速度分量持续增大,当转速持续增大并超过某一临界值时,轴向速度分量会出现迅速升高的情形;轴向速度分量的变化情形与微尺度流场(开启力和泄漏量)波动密切相关,是影响旋转流场流态的关键性指标参数,也是引起宏观流场特性变化的主要因素;径向速度分量的变化情形与微尺度流场泄漏量的变化规律基本一致,随着转速的增大,泄漏量的宏观性能反馈要早于开启力波动的出现.基于以上研究,同时根据管道雷诺数、流量因子判定模型及流体力学基本理论,尝试提出了基于三维速度分量的针对旋转流场流态的椭球判定模型.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号