首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents numerical simulation of the physical phenomena in heat pipe. The vapour dynamics of working fluid is considered in the numerical analysis of the heat pipe. A two-phase analysis is carried out for the heat pipe. The compressible flow equations for vapour-phase interaction with water particle phase are solved by a finite volume technique. A three stage Runge-Kutta time-stepping method is employed to solve vapour dynamics. Damping term is added to stablize the numerical scheme. An example is worked out to study the two phase flow in the heat pipe.  相似文献   

2.
Summary A numerical solution for a fluid motion in a circular pipe orifice is compared with experimental results. Knowledge of the velocity field allows us to find the pressure field. There is good agreement between the piezometric heads and head losses computed and those obtained in experiments.
Sommario Si studia uno schema numerico per la soluzione delle equazioni di Navier-Stokes in un campo a simmetria assiale. I risultati del modello matematico di un processo di moto attraverso un diaframma inserito in una condotta rettilinea, vengono messi a confronto con quelli ottenuti mediante una installazione sperimentale; si constata una buona corrispondenza fra le diverse grandezze esaminate, tra le quali rivestono notevole importanza l'andamento della piezometrica lungo il condotto e l'entità delle perdite di carico localizzate.
  相似文献   

3.
Solar energy provides significant opportunities to the power needs. The pipes with micro-grooves etched in the inner wall have been widely taken on the absorber receiver in the parabolic trough and cooling systems for solar thermal absorbers because this sort of pipes improves heat transfer. To support parabolic trough design in solar energy application systems, this study developed a capillary-driven two-phase flow model. The study further examines the influences caused by different micro-grooves, fluids, temperatures, radiuses and widths of groove. Our study concludes that (1) the triangular-microgroove has better influence of the liquid front position than semicircular-microgroove. (2) Water has better influence of liquid front position than ethanol and benzene. (3) The saturated temperature is indirectly proportional to the liquid front position. (4) The length of liquid front position is longer if value of radius is higher. (5) The width of groove does not significantly affect on the liquid front position and velocity. In addition, the proposed mathematical modeling is solved more correctly as compared to previous research. From our results, a good design of the micro-groove pipe can be achieved.  相似文献   

4.
The effect of swirling intensity on the structure and heat transfer of a turbulent gas–droplet flow after a sudden pipe expansion has been numerically simulated. Air is used as the carrier phase, and water, ethanol, and acetone are used as the dispersed phase. The Eulerian approach is applied to simulate the dynamics and heat transfer in the dispersed phase. The gas phase is described by a system of Reynolds-averaged Navier-Stokes (RANS) equations, taking into account the effect of droplets on mean transport and turbulent characteristics in the carrier phase. Gas phase turbulence is predicted using the second-moment closure. A swirling droplet-laden flow is characterized by an increase in the number of small particles on the pipe axis due to their accumulation in the zone of flow recirculation and the action of the turbulent migration (turbophoresis) force. A rapid dispersion of fine droplets over the pipe cross-section is observed without swirling. With an increase in swirling intensity, a significant reduction in the length of the separation region occurs. The swirling of a two-phase flow with liquid droplets leads to an increase in the level of turbulence for all three types of liquid droplets investigated in this work due to their intensive evaporation. It is shown that the addition of droplets leads to a significant increase in heat transfer in comparison with a single-phase swirling flow. The greatest effect of flow swirling on heat transfer intensification in a two-phase gas-droplet flow is obtained for the droplets of ethanol and water and smallest effect is for the acetone droplets.  相似文献   

5.
This paper presents results of the numerical study of a piston-driven unsteady flow in a pipe with sudden expansion. The piston closes the larger-diameter pipe and moves between two limiting positions with strong acceleration or deceleration at the beginning and end of each stroke and constant velocity in between. The piston velocity in the exhaust stroke is about four times higher than in the intake stroke. Periodic piston movement in this fashion creates a complex unsteady flow between the piston head and the plane of sudden expansion. The numerical method is implicit and of finite volume type, using a moving grid and a collocated arrangement of variables. Second-order spatial discretization, fine grids and a multigrid solution method were used to ensure high accuracy and good efficiency. Spatial and temporal discretization errors were of the order of 1% and 0.1% respectively. The features of the flow are discussed and the velocity profiles are compared with experimental data, showing good qualitative and quantitative agreement.  相似文献   

6.
Numerical studies are made of flow and heat transfer characteristics of a pulsating flow in a pipe. Complete time-dependent laminar boundary-layer equations are solved numerically over broad ranges of the parameter spaces, i.e., the frequency parameter β and the amplitude of oscillation A. Recently developed numerical solution procedures for unsteady boundary-layer equations are utilized. The capabilities of the present numerical model are satisfactorily tested by comparing the instantaenous axial velocities with the existing data in various parameters. The time-mean axial velocity profiles are substantially unaffected by the changes in β and A. For high frequencies, the prominent effect of pulsations is felt principally in a thin layer near the solid wall. Skin friction is generally greateer than that of a steady flow. The influence of oscillation on skin friction is appreciable both in terms of magnitude and phase relation. Numerical results for temperature are analyzed to reveal significant heat transfer characteristics. In the downstream fully established region, the Nusselt number either increases or decreases over the steady-flow value, depending on the frequency parameter, although the deviations from the steady values are rather small in magnitude for the parameter ranges computed. The Nusselt number trend is amplified as A increases and when the Prandtl number is low below unity. These heat transfer characteristics are qualitatively consistent with previous theoretical predictions.  相似文献   

7.
The transient response of a non-Newtonian power-law fluid to several assumed forms of pressure pulse in a circular tube is analysed by the semi-direct variational method of Kanntovorich. Velocity profiles are shown for several power-law indices, and by comparing the results for the Newtonian case with the exact solution given by Szymanski, it is observed that the results are good to 5%. More accurate solutions have been found for the case involving Newtonian fluid flow. New results are reported concerning the effect of a triangular pressure pulse on the development and transient response of the flow field of a non-Newtonian fluid.  相似文献   

8.
In this paper, turbulence in a complicated pipe is simulated by using the k-ε model. The ladder-like mesh approximation is used to solve the problem of complicated boundary with the result of numerical simulation favorable. Two computational examples are given to validate the strong adaptability and stability of k-ε model.  相似文献   

9.
The present work investigates the stability properties of the flow in a 90°-bend pipe with curvature δ=R/Rc=1/3, with R being the radius of the cross-section of the pipe and Rc the radius of curvature at the pipe centreline. Direct numerical simulations (DNS) for values of the bulk Reynolds number Reb=UbD/ν between 2000 and 3000 are performed. The bulk Reynolds number is based on the bulk velocity Ub, the pipe diameter D, and the kinematic viscosity ν. The flow is found to be steady for Reb2500, with two main pairs of symmetric, counter-rotating vortices in the section of the pipe downstream of the bend. The presence of two recirculation regions is detected inside the bend: one on the outer wall and the other on the inner side. For Reb2550, the flow exhibits a periodic behaviour, oscillating with a fundamental non-dimensional frequency St=fD/Ub=0.23. A global stability analysis is performed in order to determine the cause of the transition from the steady to the periodic regime. The spectrum of the linearised Navier-Stokes operator reveals a pair of complex conjugate eigenvalues with positive real part, hence the transition is ascribed to a Hopf bifurcation occurring at Reb,cr2531, a value much lower than the critical Reynolds number for the flow in a torus with the same curvature. The velocity components of the unstable direct and adjoint eigenmodes are investigated, and they display a large spatial separation, most likely due to the non-normality of the linearised Navier-Stokes operator. Thus, the core of the instability, also known in the literature as the wavemaker, is sought performing an analysis of the structural sensitivity of the unstable eigenmode to spatially localised feedbacks. The region located 15° downstream of the bend inlet, on the outer wall, is the most receptive to this kind of perturbations, and thus corresponds to where the instability originates. Since this region coincides with the outer-wall separation bubble, it is concluded that the instability is linked to the strong shear by the backflow phenomena. The present results are relevant for technical applications where bent pipes are frequently used, and their stability properties have hitherto not been studied.  相似文献   

10.
The paper presents an analysis of some recently proposed improvements of the water hammer equations, which concern the friction term in the momentum equation. A comparison of the experimental data and numerical results shows that the required damping and smoothing of the pressure wave cannot be obtained by modification of the friction factor only. In order to evaluate the significance of the introduced improvements into the momentum equation, the accuracy of the numerical solution has been analysed using the modified equation approach. The analysis shows why the physical dissipation process observed in the water hammer phenomenon cannot be reproduced with the commonly used source term in Darcy–Weisbach form, representing friction force in the momentum equation. Therefore, regardless of the proposed form of the friction factor for unsteady flow, the model of water hammer improved in such a way keeps its hyperbolic character. Consequently, it cannot ensure the expected effects of damping and smoothing of the calculation head oscillations. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
The temporal rheological behavior of FENE and FENE-P models is investigated using the flow in a circular, straight tube. The CONNFFESSIT approach is applied to simulate transient Hagen–Poiseuille flow for different pressure drops and model parameters. The material functions for steady and unsteady flow were extracted and compared with the reported values in the literature when it was available. For the case of the FENE model, where there is no analytical solution, the relationship between model parameters and rheological behavior has been discussed and compared with the FENE-P model.  相似文献   

12.
Summary A numerical investigation of a viscous incompressible rotating fluid flow in a circular cylinder with a net axial flow rate is presented. The cylinder is opened at the bottom and closed at the top by an ideal porous rotating disk, through which the incoming fluid flows receiving an action of solid body rotation. This physical model has been chosen for a realistic representation of fluid direct prerotation which takes place in the suction pipe of a centrifugal pump. The flow field was solved by the direct solution of the complete Navier-Stokes equations for values of Reynolds tangential numberRe t up to 5 000. The numerical results give a detailed and complete sight of the principal features of such kind of flow, and, compared with experimental results in the turbolence range ofRe t. show a significant qualitative agreement. A comparison with previous numerical investigations of other authors about rotating fluids is reported.
Sommario In questa nota si presenta uno studio numerico del moto di un fluido viscoso ed incomprimibile in un tubo cilindrico, chiuso in uscita da un disco ideale poroso rotante, che trascina e mantiene in rotazione il fluido che lo attraversa. Si è adottato il suddetto modello per rappresentare la prerotazione diretta che ha luogo nel tubo di aspirazione di una pompa centrifuga. Si è determinato il campo di velocità per via numerica attraverso la soluzione diretta delle equazioni di Navier-Stokes in forma completa fino a valori del numero di Reynolds tangenzialeRe t pari a 5 000. I risultati numerici danno un quadro dettagliato e completo delle principali caratteristiche di tale tipo di flusso, e, confrontati con risultati sperimentali disponibili nel campo diRe t turbolento, mostrano un significativo accordo qualitativo. Si riporta infine un confronto con i risultati di precedenti indagini numeriche sul moto di fluidi rotanti presenti in letteratura.
  相似文献   

13.
A new nano-scale thermal anemometry probe (NSTAP) has been developed using a novel procedure based on deep reactive ion etching. The performance of the new probe is shown to be superior to that of the previous design by Bailey (J Fluid Mech 663:160–179, 2010). It is then used to measure the streamwise velocity component of fully developed turbulent pipe flow, and the results are compared with data obtained using conventional hot-wire probes. The NSTAP agrees well with the hot-wire at low Reynolds numbers, but it is shown that it has better spatial resolution and frequency response. The data demonstrate that significant spatial filtering effects can be seen in the hot-wire data for probes as small as 7 viscous units in length.  相似文献   

14.
Summary The model used to describe turbulent flow is based on a non linear relation between the stress tensor and the rate-of-strain tensor. The turbulent velocity distribution for incompressible, one-dimensional flow is examined.  相似文献   

15.
The diagonally implicit harmonic balance method is developed in an overset mesh topology and applied to unsteady rotor flows analysis. Its efficiency is by reducing the complexity of a fully implicit harmonic balance method which becomes more flexible in handling the higher harmonics of the flow solutions. Applied to the overset mesh topology, the efficiency of the method becomes greater by reducing the number of solution interpolations required during the entire solution procedure as the method reduces the unsteady computation into periodic steady state. To verify the accuracy and efficiency of the method, both hovering and unsteady forward flight of Caradonna and Tung and AH-1G rotors are solved. Compared with wind-tunnel experiments, the numerical results demonstrate good agreements at computational cost an order of magnitude more efficient than the conventional time-accurate computation method. The proposed method has great potential in other engineering applications, including flapping wing vehicles, turbo-machinery, wind-turbines, etc.  相似文献   

16.
17.
In-line flow segregators based on axial induction of swirling flow have important applications in chemical, process and petroleum production industries. In the later, the segregation of gas bubbles and/or water droplets dispersed into viscous oil by swirling pipe flow may be beneficial by either providing a pre-separation mechanism (bubble and/or drop coalescer) or, in the case of water-in-oil dispersions, by causing a water-lubricated flow pattern to establish in the pipe (friction reduction). Works addressing these applications are rare in the literature. In this paper, the features and capabilities of swirling pipe flow axially induced by a vane-type swirl generator were investigated both numerically and experimentally. The numerical analysis has been carried out using a commercial CFD package for axial Reynolds numbers less than 2000. Pressure drop, tangential and axial velocity components as well as swirl intensity along a 5 cm i.d. size and 3 m long pipe were computed. Single phase flow experiments have been performed using a water–glycerin solution of 54 mPa s viscosity and 1210 kg/m3 density as working fluid. The numerical predictions of the pressure drop were compared with the experimental data and agreement could be observed within the range of experimental conditions. The experiments confirmed that swirl flow leads to much higher friction factors compared with theoretical values for non-swirl (i.e. purely axial) flow. Furthermore, the addition of a conical trailing edge reduces vortex breakdown. Visualization of the two-phase swirling flow pattern was achieved by adding different amounts of air to the water–glycerin solution upstream the swirl generator.  相似文献   

18.
The cross-correlation technique and Laser Induced Fluorescence (LIF) have been adopted to measure the time-dependent and two-dimensional velocity and temperature fields of a stably thermal-stratified pipe flow. One thousand instantaneous and simultaneous velocity and temperature maps were obtained at overall Richardson numberRi = 0 and 2.5, from which two-dimensional vorticity, Reynolds stress and turbulent heat flux vector were evaluated. The quasi-periodic inclined vortices (which connected to the crest) were revealed from successive instantaneous maps and temporal variation of vorticity and temperature. It has been recognized that these vortices are associated with the crest and valley in the roll-up motion.List of symbols A Fraction of the available light collected - C Concentration of fluorescence - D Pipe diameter - I Fluorescence intensity - L Sampling length along the incident beam - I 0 Intensity of an excitation beam - I c (T) Calibration curve between temperature and fluorescence intensity - I ref Reference intensity of fluorescence radiation - Re b Reynolds number based on bulk velocity,U b D/v - Ri Overall Richardson number based on velocity difference,gDT/U 2 - t Time - t Time interval between the reference and corresponding matrix - T Temperature - T 1,T 2 Temperature of lower and upper layer - T * Normalized temperature, (T–T 1)/T - T c (I) Inverse function of temperature as a function ofI c - T ref Reference temperature - T Temperature difference between upper and lower flow,T 2T 1 - U 1 Velocity of lower stream - U 2 Velocity of upper stream - U b Bulk velocity - U c Streamwise mean velocity atY/D=0 - U Streamwise velocity difference between upper and lower flow,U 1U 2 - u, v, T Fluctuating component ofU, V, T - U, V Velocity component of X, Y direction - X Streamwise distance from the splitter plate - Y Transverse distance from the centerline of the pipe - Z Spanwise distance from the centerline of the pipe - Quantum yield - Absorptivity - vorticity calculated from a circulation - Kinematic viscosity - circulation  相似文献   

19.
An asymptotic approach is considered for the transport and deposition of nanofibres in pipe flow. Convection and Brownian diffusion are included, and Brownian diffusion is assumed to be the dominant mechanism. The fibre position and orientation are modelled with a probability density function for which the governing equation is a Fokker–Planck equation. The focus is set on dilute fibres concentrations implying that interaction between individual fibres is neglected. At the entrance of the pipe, a fully developed velocity profile is set and it is assumed that the fibres enter the pipe with a completely random orientation and position. A small parameter ${\varepsilon =l/a}$ is introduced, where l is the fibre half-length and a is the pipe radius. The probability density function is expanded for small ${\varepsilon}$ and the solution turns out to be multi-structured with three areas, consisting of one outer solution and two boundary layers. For the deposition of fibres on the wall, it is found that for parabolic flow, and for the lowest order, the deposition can be obtained with a simplified angle averaged convective-diffusion equation. It is suggested that this simplification is valid also for more complex flows like when the inflow boundary condition yields a developing velocity profile and flows within more intricate geometries than here studied. With the model fibre, deposition rates in human respiratory airways are derived. The results obtained compare relatively well with those obtained with a previously published model.  相似文献   

20.
 The examinations on the heat transfer in developing laminar oscillating pipe flow presented before [1] have been extended to include turbulence as well. A suitable low-Reynolds-number k-ɛ-turbulence model was incorporated in an existing 2D-simulation code for oscillating flow conditions and subsequent examinations focused on the heat transfer associated with turbulent oscillating flow. The calculations cover a wide range of the characteristic parameters and the results are summarised in form of new heat transfer correlations to suit with the operating conditions of regenerative thermal machines. Received on 5 July 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号