首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose a computational method for approximating the heat transfer coefficient of fully-developed flow in porous media. For a representative elementary volume of the porous medium we develop a transport model subject to periodic boundary conditions that describes incompressible fluid flow through a uniformly heated porous solid. The transport model uses a pair of pore-scale energy equations to describe conjugate heat transfer. With this approach, the effect of solid and fluid material properties, such as volumetric heat capacity and thermal conductivity, on the overall heat transfer coefficient can be investigated. To cope with geometrically complex domains we develop a numerical method for solving the transport equations on a Cartesian grid. The computational method provides a means for approximating the heat transfer coefficient of porous media where the heat generated in the solid varies “slowly” with respect to the space and time scales of the developing fluid. We validate the proposed method by computing the Nusselt number for fully developed laminar flow in tubes of rectangular cross section with uniform wall heat flux. Detailed results on the variation of the Nusselt number with system parameters are presented for two structured models of porous media: an inline and a staggered arrangement of square rods. For these configurations a comparison is made with literature on fully-developed flows with isothermal walls.  相似文献   

2.
The governing equation for Darcy-Forchheimer flow of non-Newtonian inelastic power-law fluid through porous media has been derived from first principles. Using this equation, the problem of Darcy-Forchheimer natural, forced, and mixed convection within the porous media saturated with a power-law fluid has been solved using the approximate integral method. It is observed that a similarity solution exists specifically for only the case of an isothermal vertical flat plate embedded in the porous media. The results based on the approximate method, when compared with existing exact solutions show an agreement of within a maximum error bound of 2.5%.Nomenclature A cross-sectional area - b i coefficient in the chosen temperature profile - B 1 coefficient in the profile for the dimensionless boundary layer thickness - C coefficient in the modified Forchheimer term for power-law fluids - C 1 coefficient in the Oseen approximation which depends essentially on pore geometry - C i coefficient depending essentially on pore geometry - C D drag coefficient - C t coefficient in the expression forK * - d particle diameter (for irregular shaped particles, it is characteristic length for average-size particle) - f p resistance or drag on a single particle - F R total resistance to flow offered byN particles in the porous media - g acceleration due to gravity - g x component of the acceleration due to gravity in thex-direction - Grashof number based on permeability for power-law fluids - K intrinsic permeability of the porous media - K * modified permeability of the porous media for flow of power-law fluids - l c characteristic length - m exponent in the gravity field - n power-law index of the inelastic non-Newtonian fluid - N total number of particles - Nux,D,F local Nusselt number for Darcy forced convection flow - Nux,D-F,F local Nusselt number for Darcy-Forchheimer forced convection flow - Nux,D,M local Nusselt number for Darcy mixed convection flow - Nux,D-F,M local Nusselt number for Darcy-Forchheimer mixed convection flow - Nux,D,N local Nusselt number for Darcy natural convection flow - Nux,D-F,N local Nusselt number for Darcy-Forchheimer natural convection flow - pressure - p exponent in the wall temperature variation - Pe c characteristic Péclet number - Pe x local Péclet number for forced convection flow - Pe x modified local Péclet number for mixed convection flow - Ra c characteristic Rayleigh number - Ra x local Rayleigh number for Darcy natural convection flow - Ra x local Rayleigh number for Darcy-Forchheimer natural convection flow - Re convectional Reynolds number for power-law fluids - Reynolds number based on permeability for power-law fluids - T temperature - T e ambient constant temperature - T w,ref constant reference wall surface temperature - T w(X) variable wall surface temperature - T w temperature difference equal toT w,refT e - T 1 term in the Darcy-Forchheimer natural convection regime for Newtonian fluids - T 2 term in the Darcy-Forchheimer natural convection regime for non-Newtonian fluids (first approximation) - T N term in the Darcy/Forchheimer natural convection regime for non-Newtonian fluids (second approximation) - u Darcian or superficial velocity - u 1 dimensionless velocity profile - u e external forced convection flow velocity - u s seepage velocity (local average velocity of flow around the particle) - u w wall slip velocity - U c M characteristic velocity for mixed convection - U c N characteristic velocity for natural convection - x, y boundary-layer coordinates - x 1,y 1 dimensionless boundary layer coordinates - X coefficient which is a function of flow behaviour indexn for power-law fluids - effective thermal diffusivity of the porous medium - shape factor which takes a value of/4 for spheres - shape factor which takes a value of/6 for spheres - 0 expansion coefficient of the fluid - T boundary-layer thickness - T 1 dimensionless boundary layer thickness - porosity of the medium - similarity variable - dimensionless temperature difference - coefficient which is a function of the geometry of the porous media (it takes a value of 3 for a single sphere in an infinite fluid) - 0 viscosity of Newtonian fluid - * fluid consistency of the inelastic non-Newtonian power-law fluid - constant equal toX(2 2–n )/ - density of the fluid - dimensionless wall temperature difference  相似文献   

3.
本文利用分叉理论研究了流体饱和的二维多孔介质从底部加热所引起的自然对流,用有限差分方法确定对流的分叉进程;揭示其模式转换机理及分叉对非正常流动图象形成的影响;同时确定了矩形截面宽高比与临界端利数的关系。还提出了一个判别分支稳定笥的简明方法。  相似文献   

4.
Magnetohydrodynamic natural convection heat transfer from radiate vertical surfaces with fluid suction or injection is considered. The nonsimilarity parameter is found to be the conductive fluid injection or suction along the streamwise coordinate = V{4x/2 g(T w T )}1/4. Three dimensionless parameters had been found to describe the problem: the magnetic influence number N = B 2 y /V 2, the radiation-conduction parameter R d = k R /4aT 3 , and the Gebhart number Ge x = gx/cp to represent the effect of the viscous dissipation. It is found that increasing the magnetic field strength causes the velocity and the heat transfer rates inside the boundary layer to decrease. Its apparent that increasing the radiation-conduction parameter decreases the velocity and enhances the heat transfer rates. The Gebhart number, i.e, the viscous dissipation had no effect on the present problem.Nomenclature a Stefan-Boltzmann constant - B y Magnetic field flux density Wb/m2 - Cf x Local skin friction factor - c p Specific heat capacity - f Dimensionless stream function - Ge x Gebhart number, gx/cp - g Gravitational acceleration - k Thermal Conductivity - L Length of the plate - N Magnetic influence number, B 2 y /V 2 - p Pressure - Pr Prandtl number - q r Radiative heat flux - q w (x) Local surface heat flux - Q w (x) Dimensionless Local surface heat flux - R d Planck number (Radiation-Conduction parameter), k R /4aT 3 - T Temperature - T Free stream temperature - T w Wall temperature - u, v Velocity components in x- and y-directions - V Porous wall suction or injection velocity - V w Porous wall suction or injection velocity - x, y Axial and normal coordinates - Thermal diffusivity Greek symbols R Roseland mean absorption coefficient, 4/3R d - Coefficient of thermal expansion - Nonsimilarity parameter, V{4x/2 g(T w T )}1/4 - Peseudo-similarity variable - Dimensionless temperature - w Ratio of surface temperature to the ambient temperature, T w /T - Dynamice viscosity - Kinemtic viscosity - Fluid density - Electrical conductivity - w Local wall shear stress - Dimensional stream function  相似文献   

5.
6.
A detailed numerical study has been performed to investigate transient natural convection heat and mass transfer in a porous enclosure. Major dimensionless groups governing the present problem areRa,N,Le, φ andAr. Results are particular presented to illustrate the effects of the combined thermal and solutal buoyancy forces on the temporal evolution of local/average Nusselt and Sherwood numbers. The results show that with the increase in the Rayleigh number, the heat and mass transfer is enhanced as a result of greater buoyancy effect. Additionally, the increase in buoyancy ratioN results in an improvement in the heat and mass transfer rates and in the mean time causes a short time duration for the flow to approach the steady-state condition.  相似文献   

7.
Unsteady three-dimensional conjugate natural convection in a closed vertical cylinder with a local energy source under convective heat transfer to its surroundings is mathematically modeled in the “vector potential—velocity vorticity—temperature” variables. The temperature and velocity fields, together with the dependences of the mean Nusselt number at the energy source surface on a complex of the governing parameters controlling the formation of different regimes of mass, momentum, and energy transfer, are obtained.  相似文献   

8.
The finite element method is used to analyse convective heat transfer in a porous medium. Convection past a vertical surface embedded in the medium and convection in a confined porous medium enclosure are analysed using the above method. The results are compared with those available in the literature and the agreement is found to be good. The method is applicable for two-dimensional analysis in a porous body of any arbitrary shape. The restriction of the boundary layer assumption is relaxed.  相似文献   

9.
This paper presents a theoretical and numerical investigation of the natural convection boundary-layer along a vertical surface, which is embedded in a porous medium, when the surface heat flux varies as (1 +x 2)), where is a constant andx is the distance along the surface. It is shown that for > -1/2 the solution develops from a similarity solution which is valid for small values ofx to one which is valid for large values ofx. However, when -1/2 no similarity solutions exist for large values ofx and it is found that there are two cases to consider, namely < -1/2 and = -1/2. The wall temperature and the velocity at large distances along the plate are determined for a range of values of .Notation g Gravitational acceleration - k Thermal conductivity of the saturated porous medium - K Permeability of the porous medium - l Typical streamwise length - q w Uniform heat flux on the wall - Ra Rayleigh number, =gK(q w /k)l/(v) - T Temperature - Too Temperature far from the plate - u, v Components of seepage velocity in the x and y directions - x, y Cartesian coordinates - Thermal diffusivity of the fluid saturated porous medium - The coefficient of thermal expansion - An undetermined constant - Porosity of the porous medium - Similarity variable, =y(1+x ) /3/x 1/3 - A preassigned constant - Kinematic viscosity - Nondimensional temperature, =(T – T )Ra1/3 k/qw - Similarity variable, = =y(loge x)1/3/x 2/3 - Similarity variable, =y/x 2/3 - Stream function  相似文献   

10.
Natural convection in anisotropic heat generating porous medium enclosed inside a rectangular cavity has been studied. A 3D finite volume based code is developed using the Darcy approximation and validated using experimental results of natural convection around an enclosed rod bundle. Subsequently, detailed simulation is carried out for a cavity, filled with orthotropic porous medium. The effects of heat generation, geometry and anisotropy are studied. Anisotropy is found to be of significant importance for both maximum value and distribution of temperature.  相似文献   

11.
最大偏心圆环空间自然对流传热的数值分析   总被引:2,自引:0,他引:2  
采用正切圆坐标变换 ,对不同直径比以及上、下、侧面三种偏心位置 ,偏心率达到最大值± 1的变壁温水平圆柱环形封闭空间内空气的自然对流传热进行了数学模拟 ,求出的二维空间温度分布与实验拍摄相应的温度干涉条纹图片吻合良好。计算结果同时给出流线分布及内、外壁面的局部传热系数、热流量。并与现有的偏心率小于 1的有关资料作对比分析。数值计算的范围是 :2 .0× 1 0 2 ≤ Ra≤ 3 .0× 1 0 5,1 .3≤ Do/Di≤ 3 .8,Pr=0 .70 6,|ε|=1 .  相似文献   

12.
An analysis is made of convective heat transport, produced by uniform heating from below, in a horizontal layer of a porous medium consisting of vertical slabs or columns of different permeabilities. Estimates of the heat flux are made on the assumption that flow in one column does not interact with flow in adjacent columns. The results are compared with those for a homogeneous layer, for which previous work is reviewed. It is found that an inhomogeneous layer transports less heat than a homogeneous layer for which the mean Rayleigh number is the same, if the Rayleigh number is supercritical throughout the layer. If the Rayleigh number is subcritical in part of the layer, the inhomogeneous layer may transport more heat than the equivalent homogeneous layer.  相似文献   

13.
Summary A steady conjugate heat transfer problem dealing with conduction in a heat-generating slab and free convection in the surrounding fluid is studied analytically. Free convection is analyzed by a Görtler-type series solution to the boundary-layer equations for non-uniform surface-temperature variations, while conduction is treated by the standard technique of Fourier transforms. Interfacial temperature and heat flux variations from both solutions in series forms are then formally matched to yield algebraic relations for the coefficients in the series. These coefficients can then be simply evaluated in a given problem in terms of three physical parameters. A numerical example is shown.  相似文献   

14.
15.
Fluid and heat flow at temperatures approaching or exceeding that at the critical point (374 °C for pure water, higher for saline fluids) may be encountered in deep zones of geothermal systems and above cooling intrusives. In the vicinity of the critical point the density and internal energy of fluids show very strong variations for small temperature and pressure changes. This suggests that convective heat transfer from thermal buoyancy flow would be strongly enhanced at near-critical conditions. This has been confirmed in laboratory experiments. We have developed special numerical techniques for modeling porous flow at near-critical conditions, which can handle the extreme nonlinearities in water properties near the critical point. Our numerical simulations show strong enhancements of convective heat transfer at near-critical conditions; however, the heat transfer rates obtained in the simulations are considerably smaller than data reported from laboratory experiments by Dunn and Hardee. We discuss possible reasons for this discrepancy and develop suggestions for additional laboratory experiments.  相似文献   

16.
The diffuse approximation is presented and applied to natural convection problems in porous media. A comparison with the control volume-based finite-element method shows that, overall, the diffuse approximation appears to be fairly attractive.Nomenclature H height of the cavities - I functional - K permeability - p(M i ,M) line vector of monomials - p T p-transpose - M current point - Nu Nusselt number - Ri inner radius - Ro outer radius - Ra Rayleigh number - x, y cartesian coordinates - u, v velocity components - T temperature - M vector of estimated derivatives - t thermal diffusivity - coefficient of thermal expansion - practical aperture of the weighting function - scalar field - (M, M i ) weighting function - streamfunction - kinematic viscosity  相似文献   

17.
Starting from a clear flow situation with no porous matrix a regular perturbation analysis is applied to account for the influence of a highly porous matrix. The perturbation parameter is 1 –n,n being the porosity. By means of asymptotic formulae thex-dependence of the problem under consideration as well as most parameters of the problem can be separated. Thus only ordinary differential equations with the Prandtl number as a parameter have to be solved. Skin friction and heat transfer formulae are given asymptotically which compare well with literature data for highly porous media.Ausgehend von der Strömungssituation ohne poröse Matrix wird eine reguläre Störungsrechnung durchgeführt, die den Einfluß einer hoch porösen Matrix erfaßt. Der Störparameter ist 1 –n, wobein die Porosität ist. Mit Hilfe der asymptotischen Formulierung können diex-Abhängigkeit sowie eine Reihe von Parameterabbängigkeiten in dem Problem separiert werden. Auf diese Weise müssen nur gewöhnliche Differentialgleichungen gelöst werden, die als einzigen Lösungsparameter die Prandtl-Zahl besitzen. Die asymptotischen Ergebnisse für Impuls- und Wärmeübergang stimmen gut mit Literaturdaten zu hoch porösen Medien überein.  相似文献   

18.
19.
In this study, a transient heat transfer process of freezing water inside a two-dimensional square cavity has been investigated numerically. Water was used as a phase-change medium, and the numerical model has been created with control volume approach by using C++ programming language. To be able to accelerate the numerical calculations, CUT (Consistent-Update-Technique) algorithm has been implemented in the numerical code. Span-wise variations of the vertical component of the velocity have been represented in comparison with the experimental measurements from the literature at various vertical positions to examine the accuracy of the numerical scheme. The influence of natural convection has been considered by comparing the conduction and convection dominated solidification under same boundary conditions. Comparative results have been obtained regarding time-wise variations of the cold wall temperature and the dimensionless effectiveness. Moreover, the streamlines and isotherms have been represented to understand the differences between the conduction and convection driven phase change processes.Results indicate that natural convection becomes remarkable and has different forms at the initial periods of the phase change process. Increasing the effect of natural convection in the cavity increases the cooling rate of water. Near the density inversion temperature of water (4°C), temperature variations fluctuate and counter currents observed in the domain.  相似文献   

20.
Coupled heat transfer between laminar forced convection along and conduction inside a flat plate wall is theoretically studied. The laminar convective boundary layer is analyzed by employing the integral technique. The energy equations for the fluid and the plate wall are combined under the condition of the continuity in the temperature and heat flux at the fluid-solid interface. The analysis results in a simple formal solution. Expressions have been obtained for calculating local Nusselt number, wall heat flux and temperature along the plate, all are functions of the local Brun number, Br x , which is a measure of the ratio of the thermal resistance of the plate to that of the convective boundary layer. The results indicate that for Br x ≥0.15, neglecting the plate resistance will results in an error of more than 5% in Nusselt number. Comparison of the present solution with other previous studies has been made. The solution may be of a considerable theoretical and practical interest. Received on 19 August 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号