首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
涡轮冷却叶片气动与传热设计优化   总被引:1,自引:0,他引:1  
提出了航空发动机涡轮冷却叶片叶栅气动与传热自动优化方法,利用函数解析成型方法实现了冷却叶片几何模型的参数化与自动生成,可以建立任意冷却内腔数量的叶片模型;基于N-S方程实现叶片流体域与固体域的流-热耦合分析;采用KS函数方法将多目标优化问题转化为单目标函数进行优化,以总压损失、叶片最高温度和平均温度最小为优化目标进行了自动优化,改善了叶片性能。  相似文献   

2.
Because of its geometry, the vane trailing edge is one of the most difficult regions to be cooled. A trailing edge cutback cooling system is one of the most effective solution for cooling the trailing edge of high-pressure gas turbine nozzle vanes. In this study, a parametric analysis of the thermal performance of a nozzle vane cascade with a pressure side cooling system including two rows of cylindrical holes and a trailing edge cutback featuring 8 rectangular slots was carried out by using dual luminophor (binary) PSP technique. Coolant to mainstream mass flow rate (MFR), density ratio (DR), main flow Mach number (Ma2is) and turbulence intensity level (Tu1) and the state of the approaching boundary layer were the considered parameters. Binary PSP was able to measure the coolant concentration independently from temperature, thus allowing to compute the true adiabatic film cooling effectiveness in a complex environment. MFR was shown to have a strong impact on both holes and cutback performance. The thermal protection over the cutback region was promoted by high Ma2is and high DR values, while Tu1 and the boundary layer state only marginally affected the thermal behavior, especially at high MFR.  相似文献   

3.
The effect of film cooling on the aerodynamic performance of turbine blades is becoming increasingly important as the gas turbine operating temperature is being increased in order to increase the performance. The current paper investigates the effect of blowing ratio on the aerodynamic losses of a symmetric airfoil by pressure measurements and Particle Image Velocimetry (PIV). The test model features 4 rows of holes located on the suction side at 5%, 10%, 15% and 50% of the chord length. The Reynolds number based on the airfoil chord is 1.2 × 105. Experiments are performed by varying the location of air injection, the angle of attack, and the mainstream velocity. The coolant air is injected at ambient temperature and the blowing ratio is varied from 0 to 1.91. It is observed that the losses due to film cooling increase with blowing ratio of 0 to 0.48, and the wake is shifted towards the suction side. Conversely, the aerodynamic losses decrease when the blowing ratio is increased further from 0.64 to 1.91. This trend has been observed for all the experimental configurations. The effect of blowing ratio on flow separation is investigated with the time-averaged velocity fields obtained from PIV measurements. It is observed that low blowing ratios, the separation point shifts upstream and at high blowing ratios the ejected coolant energizes the flow and delays separation. The pressure field around the airfoil is reconstructed from the integration of the Poisson equation based on the PIV velocity fields. The experimental results can be used for validation of numerical models for predicting losses due to film cooling.  相似文献   

4.
The influence of various incidence angles on film cooling effectiveness of an axial turbine blade cascade with leading edge ejection from two rows of cooling holes is numerically investigated. The rows are located in the vicinity of the stagnation line. One row is located on the suction side and the other one is on the pressure side. The predicted pressure field for various blowing ratios (M = 0.7, 1.1 and 1.5) is compared with available experimental results at the design condition. Moreover, the effect of various incidence angles (?10°, ?5°, 0°, 5° and 10°) at three blowing rates is investigated by analyzing the results of both laterally averaged and area averaged values of adiabatic film cooling effectiveness. Numerical results indicate that the incidence angle can strongly affect the thermal protection of the blade at low blowing ratio but becomes less dominant at high blowing ratio. In fact, for the low blowing ratio, a small change in the incidence angle that relates to the design condition can deeply affect the thermal protection of the blade, which is evident from the laterally and area averaged film cooling effectiveness distributions.  相似文献   

5.
Numerical modelling of film cooling from converging slot-hole   总被引:1,自引:0,他引:1  
This paper presents a numerical prediction of a new 3D film cooling hole geometry, the converging slot-hole or console. The console geometry is designed in order to improve the heat transfer and aerodynamic loss performance of turbine vane and rotor blade cooling systems without loosing the mechanical strength of a row of discrete holes. The cross section of the console changes from a circular shape at the inlet to a slot at the exit. Previous successful application of a new anisotropic DNS based two-layer turbulence model to cylindrical and shaped hole injections is extended to predict film cooling for the new console geometry. The suitability of the proposed turbulence model for film cooling flow is validated by comparing the computed and the measured wall-temperature distributions of cylindrical hole injections. The result shows that the anisotropic eddy-viscosity/diffusivity model can correctly predict the spanwise spreading of the temperature field and reduce the strength of the secondary vortices. Comparative computations of the adiabatic film cooling effectiveness associated with the three geometries tested in the present study (cylindrical, shaped, and console) show that the new console film-cooling hole geometry is definitely superior to the other geometries as shown by the uniform lateral spreading of the effectiveness with a slight enhancement downstream of the intersection of the two consoles.  相似文献   

6.
The focus of the first part of this numerical study is to investigate the effects of two new configurations: (1) slot with cylindrical end and (2) slot with median cylindrical hole, generated by the combination between two film cooling configurations: cylindrical hole and uniform slot. Computational results are presented for a row of coolant injection holes on each side of an asymmetrical turbine blade model near the leading edge. For each configuration, three values of the radius are taken: R = 0.4, R = 0.8 and R = 1.2. The six cases simulations, thus obtained, are conducted for the same density ratio of 1.0 and the same inlet plenum pressure. A new parameter, Rc, is defined to measure the rate of blade coverage by the film cooling. Results show that, at the pressure side; for the two new configurations, the six studied cases exceed the case baseline in cooling effectiveness term with the best result obtained for R = 0.8 (case 2). For the suction side, only configurations with R = 0.4 (cases 1 and 4) provide an increase of film effectiveness compared to the case baseline. The following configuration: Cases 1 or 4 at the suction side and case 2 at the pressure side, gets the best thermal protection because of their higher coverage and strong cooling effectiveness.  相似文献   

7.
This work aims at understanding the flow and heat transfer through a microcavity populated with micropins, representing a layer of a 3D integrated electronic chip stack with integrated cooling. The resulting vortex shedding behavior and its effect on the heat removal is analyzed in the Reynolds number (Re) range from 60 to 450. The lateral confinement, expressed as the ratio of diameter to lateral distance between two cylinders’ centers, is varied between 0.1 and 0.5; the longitudinal confinement (diameter to longitudinal distance between two cylinders’ centers) between 0.25 and 0.5; and vertical confinement (diameter to microcavity height ratio) between 0.1 and 0.5. For a single pin, as the lateral confinement is increased, the Strouhal number (St) and the shedding frequency increase by up to 100%. The thermal performance represented by the spatiotemporal averaged Nusselt number (Nu), based on the average pin surface and fluid temperatures, is also enhanced by over 30%. A direct relationship between Nu and the shedding frequency was found. For a row of pins, Nu in the vortex shedding regime was found to be up to 300% higher compared to the steady case. A decrease in the longitudinal confinement, tested with rows of pins (either with 50 or 25 pins) in the streamwise direction, led to an upstream migration of the vortex shedding location and in more homogeneous but higher wall temperatures. This coincided with a drastic reduction of pressure losses and a 30% Nu enhancement for the same pumping power. Finally, the vertical confinement is also investigated with 3D simulations around a single cylinder. With increasing Re and vertical confinement, the wake becomes strongly three-dimensional. For a given Re, the increase of vertical confinement naturally shows a suppression or even a complete elimination of the vortex shedding due to a strong end-wall effect. Our results shed light on the effects of confinement on vortex shedding and related heat transfer in the integrated cooling of 3D chip stacks.  相似文献   

8.
This paper presents a three-dimensional (3D) direct numerical simulation (DNS) study of flame-wall interaction (FWI) and flame-cooling air interaction (FCAI). A preheated, methane/air mixture enters a channel with constant temperature walls, where the top wall is effusion cooled. An imposed vertical hot sheet near the inlet creates two flame branches interacting with the top and bottom walls. The flame is observed to be leaner in the region where it interacts with the effusion cooling jets. In this region, the flame is longer and features reduced CO mass fraction. The fluctuations in the heat release rate (HRR) and CO mass fraction are also relatively small near the top wall. Near the bottom wall, finger-like flame structures are formed due to the interaction of turbulent vortices with the flame surface. These flame structures initially move away from the wall as they propagate further downstream before eventually collapsing at the wall. This leads to the creation of regions of high wall heat flux and CO. While analysis of the CO thermochemical state shows a complex picture near the bottom wall, two-dimensional (2D) manifolds can be identified near the top wall. Therefore, a framework to estimate CO mass fraction due to FCAI based on 1D freely-propagating flame solutions is proposed showing a good agreement with the DNS results.  相似文献   

9.
This work is concerned with the design of a leading edge for a flat-plate model used to study laminar and transitional boundary layers. For this study, the flow over the complete boundary-layer model, including leading edge, flat section, and trailing-edge flap, is modeled. The effect of important geometrical features of the leading edge on the resulting pressure distribution, starting from the well-known symmetric modified super ellipse, is investigated. A minimal pressure gradient on the measurement side of the plate is achieved using an asymmetrical configuration of modified super ellipses, with a thickness ratio of 7/24. An aerodynamic shape optimization is performed to obtain a novel leading edge shape that greatly reduces the length of the non-zero pressure gradient region and the adverse pressure gradient region compared to geometries defined by ellipses. Wind tunnel testing is used to validate the numerical solutions.  相似文献   

10.
高速列车通过隧道时,会引起车隧气动效应.在隧道洞口设置缓冲结构是简便有效的应对措施之一.而缓冲结构一般设置在隧道洞口,列车通过隧道产生气动载荷对该结构的影响也不容忽视.本文采用数值方法,利用Ansys软件的workbench模拟平台,对列车通过隧道产生的气动载荷作用在顶部单开口缓冲结构上的压应力变化进行模拟.研究结果表明:气动载荷所引起的结构附加应力作用明显.当行车速度为350 km/h时,附加应力可以达到80 kPa,而缓冲结构开口周围成为气动载荷附加应力集中区.对于双线隧道,近车壁面与远车壁面的附加压应力规律一致,但近车侧应力值要大于远车侧.与压力波在隧道内的传播特性类似,气动载荷所引起的附加压应力具有往复传播特征.另外,对顶部缓冲结构开口附近出现附加应力集中的原因进行了分析,确定缓冲结构形式是引起应力集中的决定因素.以上结论对隧道洞口缓冲结构的设计及安全巡查具有一定的指导意义.  相似文献   

11.
This paper numerically investigates the effectiveness of the control of steady suction on a stationary circular cylinder with several isolated suction holes on the surface at a subcritical Reynolds number. The control effectiveness as a function of the azimuthal position, spanwise spacing and suction flow rate of the suction holes on the control of the aerodynamic forces on the cylinder and the suppression of alternate vortex shedding are taken into account. The study of the azimuthal location of the suction holes indicates that azimuthal angles of θ=90° and 270°, which are close to the separation point, provide the most substantial decreases in the aerodynamic forces. When restricted to the most effective azimuthal angle, a remarkable control effectiveness can be achieved when the axial spacing between two neighboring suction holes is less than a minimum value even under a small suction momentum coefficient. However, if the axial spacing exceeds the minimum spacing, the control effectiveness will not be saturated even under a very large suction momentum coefficient. Thus, the cause of the effective aerodynamic force control is suggested to be a result of obvious three-dimensional phenomenon in the near wake, which is characterized by the generation of a convergent flow between two neighboring suction hole sections and a stronger, larger three-dimensional vortex pair adjacent to the convergent flow. It has been suggested that this strongly three-dimensional flow pattern is induced by the strong interaction between two neighboring but counter-rotating three-dimensional vortices separately produced by two neighboring suction holes. Moreover, the effects of such three-dimensional flow patterns are investigated in detail based on variations in the flow field and sectional aerodynamic forces in different cross sections. Finally, the upper limit of the axial spacing between two neighboring suction holes to form such a three-dimensional flow pattern is suggested to be between 0.75 D and 1.5 D when the suction flow rate exceeds a certain value.  相似文献   

12.
An experimental investigation is conducted to bring out the effects of coolant injector configuration on film cooling effectiveness, film cooled length and film uniformity associated with gaseous and liquid coolants. A series of measurements are performed using hot air as the core gas and gaseous nitrogen and water as the film coolants in a cylindrical test section simulating a thrust chamber. Straight and compound angle injection at two different configurations of 30°–10° and 45°–10° are investigated for the gaseous coolant. Tangential injection at 30° and compound angle injection at 30°–10° are examined for the liquid coolant. The analysis is based on measurements of the film-cooling effectiveness and film uniformity downstream of the injection location at different blowing ratios. Measured results showed that compound angle configuration leads to lower far-field effectiveness and shorter film length compared to tangential injection in the case of liquid film cooling. For similar injector configurations, effectiveness along the stream wise direction showed flat characteristics initially for the liquid coolant, while it was continuously dropping for the gaseous coolant. For liquid coolant, deviations in temperature around the circumference are very low near the injection point, but increases to higher values for regions away from the coolant injection locations. The study brings out the existance of an optimum gaseous film coolant injector configuration for which the effectiveness is maximum.  相似文献   

13.
The primary goal of this paper is to study film cooling performance for a cylindrical hole with plasma aerodynamic actuation. The simulation model of plasma aerodynamic actuation on improving film hole cooling effectiveness was established. The heat effect of plasma aerodynamic actuation model was taken into consideration. It was firstly found that the velocity and blowing ratio greatly affect the film cooling effectiveness. Then, position, power input, and the number of plasma actuators were particularly investigated.  相似文献   

14.
A multi-row effusion cooling configuration with scaled gas turbine combustor conditions is studied numerically, using a novel wall-proximity-based hybrid LES-RANS approach. The distribution of the coolant film is examined by surface adiabatic cooling effectiveness (ACE). Simulation results have shown that the accuracy of cooling effectiveness prediction is closely related to the resolution of turbulent flow structures involved in hot-cold flow mixing, especially those close to the plate surface. The formation of the coolant film in the streamwise direction is investigated. It is shown that the plate surface directly downstream the coolant holes are covered well by the coolant jets, while surface regions in between the two columns of the coolant holes could not be protected until the coolant film is developed sufficiently in the spanwise direction in the downstream region. More detailed study has also been carried out to study the time-averaged and time-dependent flow fields. The relation between the turbulent flow structures and coolant film distribution are also examined. The Kelvin–Helmholtz instability in the upper and lower coolant jet shear layer, is found to have the same frequency of around 8000 Hz, and is independent of the coolant hole position. Additionally, it is suggested by the spectral coherence analysis that those unsteady flow structures from the lower shear layer are closely related to the near wall flow temperature, and such effect is also independent of the coolant hole position.  相似文献   

15.
The 3D velocity and scalar concentration fields from a laidback fan-shaped film cooling hole are measured using Magnetic Resonance Velocimetry (MRV) and Magnetic Resonance Concentration (MRC). The velocity and scalar concentration fields of the same geometry are also obtained using Large Eddy Simulation (LES). The geometry under consideration features a single film cooling hole with a 30° inclination angle and 7° forward and lateral expansion angles. The results are compared to an existing adiabatic effectiveness experiment using infrared imaging of an identical geometry (Schroeder and Thole, 2014). Flow separation is observed inside the hole in the LES and MRV. The separated region in the LES is symmetrically located, but it is offset to a lateral side in the MRV which slightly skews the scalar concentration field to one side. Comparisons of the LES with the MRV and MRC experiments show good agreement in the velocity and scalar concentration field elsewhere throughout the 3D domain. Despite some disagreement in the adiabatic effectiveness values with the IR experiment immediately after injection, there is good agreement downstream of injection between the IR experiment and the LES and MRC. Differences in the concentration field can be attributed to differences in the in–hole velocity field. The results suggest that the mean position of the region of separation inside the hole is geometrically sensitive.  相似文献   

16.
An experimental study and a numerical simulation were conducted to investigate the mechanical and thermodynamic processes involved in the interaction between shock waves and low density foam. The experiment was done in a stainless shock tube (80 mm in inner diameter, 10 mm in wall thickness and 5 360 mm in length). The velocities of the incident and reflected compression waves in the foam were measured by using piezo-ceramic pressure sensors. The end-wall peak pressure behind the reflected wave in the foam was measured by using a crystal piezoelectric sensor. It is suggested that the high end-wall pressure may be caused by a rapid contact between the foam and the end-wall surface. Both open-cell and closed-cell foams with different length and density were tested. Through comparing the numerical and experimental end-wall pressure, the permeability coefficients α and β are quantitatively determined.  相似文献   

17.
An optimization has been performed for the design of a guide vane in the turning region of a rotating U-duct using the Kriging meta-model and a hybrid multi-objective evolutionary algorithm. Rotation of the U-duct is accompanied by the Coriolis force that causes a discrepancy in heat transfer between the trailing (pressure) and leading (suction) surfaces of the duct. For the optimization, three geometric variables related to the thickness, angle, and location of the guide vanes are selected as the design variables. A Kriging model is constructed to obtain a Pareto-optimal front through a multi-objective evolutionary algorithm. The values of the objective function at the design points are evaluated by Reynolds-averaged Navier–Stokes analysis. The shear stress transport model is used as the turbulence closure model in the analysis. The tradeoff between the two competing objective functions is discussed for Pareto-optimal solutions in the design space. The optimized guide vanes show an increase in heat transfer performance with a decrease in the friction loss in the turning region and downstream straight passage in comparison with the reference design.  相似文献   

18.
低压涡轮内部流动及其气动设计研究进展   总被引:3,自引:0,他引:3  
邹正平  叶建  刘火星  李维  杨琳  冯涛 《力学进展》2007,37(4):551-562
随着高空无人飞行器研究的不断升温, 高空低雷诺数条件下动力装置的研究越来越受到人们的重视.结合近年来国内外相关领域的研究工作, 对低雷诺数低压涡轮内部复杂流动机理的研究进展进行了介绍, 包括低雷诺数情况下低压涡轮内部非定常流动的特点, 叶片边界层分离及转捩现象机理, 上游周期性尾迹与下游叶片边界层相互作用机理等. 在此基础上给出了适合低雷诺数条件的低压涡轮气动设计方法:尾迹通过与边界层的相互作用, 能够抑制分离, 进而减小叶型损失, 在气动设计中有效引入非定常效应可以大幅度提高低压涡轮的气动负荷或降低气动损失, 最终达到提高性能的目的;数值及实验结果验证了这种设计方法的有效性.   相似文献   

19.
给出了离心泵叶片近壁表面流体粘性流动的分析方法,通过对叶片压力面边界层参数的计算和边界层分离的判断,确定分离型和流线型叶片型线,又通过对测试泵的性能对比试验,验证了叶片型线对水动力特性的影响,明确了这种影响主要体现在离心泵的水力效率、动力性能方面,并指出叶片形状的变化是导致其表面流体边界层分离点位置移动的主要原因,它决定了边界层是否分离,而过大的分离将使测试泵的性能下降,振动剧烈、噪声增大,并强调应重视边界层分析在叶片水力设计中的作用,同时给出了叶片型线水力设计的评价依据。所得结论对低比转速离心泵水动力特性的改善有参考价值。  相似文献   

20.
乘波体是一种利用激波包裹特性获得高升阻比的高速飞行器构型.已有研究中,乘波体气动性能的改善主要依赖于给定源流场条件下的前缘型线优化.本文采用数值优化和计算流体力学模拟为主要手段分析了乘波体压缩面变化对其气动性能的影响,以期有效拓展乘波体的设计空间.主要内容如下:首先给出了一种基于表面局部变形的乘波体设计方法.其次结合运用增量修正参数化方法、计算流体力学分析和微分演化算法构造了乘波体压缩面外形气动优化设计流程,以一种椭圆锥形流场生成的乘波体作为基准构型开展了无黏优化.之后从优化结果中选择升阻比递增的6个典型构型进行前缘钝化处理后,基于N-S方程对其气动性能进行了评估.最后综合依据无黏/黏性计算结果分析了乘波体压缩面变化对其气动性能的影响.结果表明该部分形状的改变对乘波体气动性能影响十分明显,在升力面积不变的条件下,乘波体压缩面形状变化可导致其升阻比出现成倍变化,即使在升力不减条件下,升阻比较基准构型也可获得超过14%的提升.此外,还可导致乘波体相对压心系数出现明显偏移.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号