首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to accurately assess measurement resolution and measurement uncertainty in DPIV and TPIV measurements, a series of simulations were conducted based on the flow field from a homogeneous isotropic turbulence data set (Re λ = 141). The effect of noise and spatial resolution was quantified by examining the local and global errors in the velocity, vorticity and dissipation fields in addition to other properties of interest such as the flow divergence, topological invariants and energy spectra. In order to accurately capture the instantaneous gradient fields and calculate sensitive quantities such as the dissipation rate, a minimum resolution of x/η = 3 is required, with smoothing recommended for the TPIV results to control the inherently higher noise levels. Comparing these results with experimental data showed that while the attenuation of velocity and gradient quantities was predicted well, higher noise levels in the experimental data led increased divergence.  相似文献   

2.
Summary Homogeneous and isotropic turbulence has been discussed in the present paper. An attempt has been made to find the simplifying hypothesis for connecting the higher order correlation tensor with the lower ones. Starting from the Navier-Stokes equations of motion for an incompressible fluid and following the usual method of taking the averages, a differential equation in Q and X, the defining scalar of the second order correlation tensor Q x and the defining scalar of a third order isotropic tensor X ijk , has been derived. The tensor X ijk stands for a tensorial expression containing the derivatives of the third and the fourth order tensors. Then the hypothesis is used that X=F(Q), where F is an unknown function. To find the forms of F, Kolmogoroff's similarity principles have been used, and thus two forms for F(Q) corresponding to two regions of the validity of these principles have been deduced.  相似文献   

3.
We present measurements of grid turbulence using 2D particle image velocimetry taken immediately downstream from the grid at a Reynolds number of Re M ?=?16500 where M is the rod spacing. A long field of view of 14M?×?4M in the down- and cross-stream directions was achieved by stitching multiple cameras together. Two uniform biplanar grids were selected to have the same M and pressure drop but different rod diameter D and cross-section. A large data set (104 vector fields) was obtained to ensure good convergence of second-order statistics. Estimations of the dissipation rate $\varepsilon$ of turbulent kinetic energy (TKE) were found to be sensitive to the number of mean-squared velocity gradient terms included and not whether the turbulence was assumed to adhere to isotropy or axisymmetry. The resolution dependency of different turbulence statistics was assessed with a procedure that does not rely on the dissipation scale η. The streamwise evolution of the TKE components and $\varepsilon$ was found to collapse across grids when the rod diameter was included in the normalisation. We argue that this should be the case between all regular grids when the other relevant dimensionless quantities are matched and the flow has become homogeneous across the stream. Two-point space correlation functions at x/M?=?1 show evidence of complex wake interactions which exhibit a strong Reynolds number dependence. However, these changes in initial conditions disappear indicating rapid cross-stream homogenisation. On the other hand, isotropy was, as expected, not found to be established by x/M?=?12 for any case studied.  相似文献   

4.
Direct numerical simulations were conducted to investigate the behavior of heavy particles in homogeneous isotropic turbulence. The present study focused on the effect of particle inertia and drift on the autocorrelations of the particle velocity and the fluid seen by particles and the dispersion characteristics of particles. The Lagrangian integral time scale of particles monotonically increased as the magnitude of the particle response time increased, while that of the fluid seen by particles remained relatively constant; it reached a maximum when the particle response time was close to the Kolmolgorov time scale of the flow. Particle dispersion increased as the particle inertia increased for small particles, while for larger particles, it decreased as particle inertia increased; particle eddy diffusion coefficient was maximal, and greater than that of the fluid by about 30%, at the preferential concentration. The concentration field of the particles with τp/τk≈1.0 showed that particles tend to collect in regions of low vorticity (high strain) due to preferential concentration. As the drift velocity of a particle is increased it crosses the paths of fluid elements more rapidly and will tend to lose correlation with its previous velocity faster than a fluid element will. And the correlation of particle velocities along the drift direction is more persistent than that perpendicular to the direction of drift. Simulations also showed that the continuity effect and the crossing-trajectory effect are weakened for particles with infinite inertia.  相似文献   

5.
 The particle image velocimetry (PIV) technique was employed to measure the instantaneous velocity distribution under nonbreaking and breaking water waves. The corresponding turbulence intensity was calculated by the ensemble average of repeated measurements. The pseudo turbulence found was large enough to affect the accuracy of the turbulence measurements. We follow Prasad et al.'s (1992) approach to demonstrate that the pseudo turbulence is related to the bias error, which is the discrepancy between the true position of the particle image and the position calculated from the pixel array data with inadequate pixel resolution. To reduce the bias error (or the pseudo turbulence), we first calculate it from a turbulence-free flow with the same experimental set-up as that used for the targeted experiments (i.e., we use the same size of field of view, seeding particles, seeding density, lens aperture, and laser wavelength in both experiments). Then we minimize the bias error from the turbulence measurements in the actual experiments. To demonstrate the procedure, the evolution of a breaking wave is investigated. Received: 30 January 1998/Accepted: 28 October 1999  相似文献   

6.
In this work, we calculate the self-similar longitudinal velocity correlation function and the statistics of the velocity difference, using the results of the Lyapunov analysis of the fully developed isotropic homogeneous turbulence just presented by the author in a previous work (de Divitiis, Theor Comput Fluid Dyn, doi:10.1007/s00162-010-0211-9). There, a closure of the von Kármán-Howarth equation is proposed and the statistics of velocity difference is determined through a specific statistical analysis of the Fourier-transformed Navier-Stokes equations. The longitudinal correlation functions correspond to steady-state solutions of the von Kármán-Howarth equation under the self-similarity hypothesis introduced by von Kármán. These solutions and the corresponding statistics of the velocity difference are numerically determined for different Taylor-scale Reynolds numbers. The obtained results adequately describe the several properties of the fully developed isotropic turbulence.  相似文献   

7.
We describe an experimental setup aimed at studying turbulent-induced droplet collisions in a laboratory setting. Our goal is to reproduce conditions relevant to warm-rain formation in clouds. In these conditions, the trajectories of small inertial droplets are strongly influenced by the background air turbulence, and collisions can potentially explain the droplet growth rates and spectrum broadening observed in this type of clouds. Warm-rain formation is currently under strong scrutiny because it is an important source of uncertainty in atmospheric models. A grid at the entrance of a horizontal wind tunnel produces homogeneous isotropic turbulence at a Re λ in the range of 400–500. Water droplets are injected from the nodes of the turbulence-inducing grid at a volume fraction (?) of 2.7?×?10?5 and with sizes of 10–200?μm. A complex manifold-injection system was developed to obtain uniform water droplet seeding, in terms of both water content and size distribution. We characterize the resulting droplet-laden turbulent flow, and the statistics of droplet pairs are measured and analyzed. We found that the radial distribution function (RDF), a measure of preferential concentration of droplets that plays a key role in collision kernel models, has a large peak at distances below the Kolmogorov microscale of the turbulence. At very long separations, comparable with the integral length scale of the turbulence, these RDFs show a slow decay to the average probability given by the mean droplet number density. Consistent with this result, conditional analysis shows an increased local concentration of droplets within the inertial length scale (≈ 10–100 Kolmogorov lengths). These results are in good agreement with previous experiments that found clustering of inertial droplets with St?≈ 1 at scales on the order of 10η. Ultimately, our results support the hypothesis that turbulence-induced preferential concentration and enhanced settling can lead to significant increases in the collision probability for inertial droplets in the range 10–50?μm.  相似文献   

8.
Measuring the turbulent kinetic energy dissipation rate in an enclosed turbulence chamber that produces zero-mean flow is an experimental challenge. Traditional single-point dissipation rate measurement techniques are not applicable to flows with zero-mean velocity. Particle image velocimetry (PIV) affords calculation of the spatial derivative as well as the use of multi-point statistics to determine the dissipation rate. However, there is no consensus in the literature as to the best method to obtain dissipation rates from PIV measurements in such flows. We apply PIV in an enclosed zero-mean turbulent flow chamber and investigate five methods for dissipation rate estimation. We examine the influence of the PIV interrogation cell size on the performance of different dissipation rate estimation methods and evaluate correction factors that account for errors related to measurement uncertainty, finite spatial resolution, and low Reynolds number effects. We find the Re λ corrected, second-order, longitudinal velocity structure function method to be the most robust method to estimate the dissipation rate in our zero-mean, gaseous flow system.  相似文献   

9.
10.
Creating homogeneous and isotropic turbulence without a mean flow   总被引:5,自引:0,他引:5  
A novel method of creating homogeneous and isotropic turbulence with small mean flow has been developed. Eight synthetic jet actuators on the corners of a cubic chamber can create energetic turbulence with root-mean-square (rms) velocities as large as 0.87 m/s, corresponding to a Taylor microscale Reynolds number, Re , of 218. Stationary turbulence results show that the turbulence was isotropic, with the rms velocity ratio equal to 1.03, and also homogeneous within the region of interest. Natural decaying turbulence measurements confirmed the power-law decay of the turbulent kinetic energy, with the decay exponent n equal to 1.86 for an initial Re of 224.  相似文献   

11.
The present work studies the isotropic and homogeneous turbulence for incompressible fluids through a specific Lyapunov analysis. The analysis consists in the calculation of the velocity fluctuation through the Lyapunov theory applied to the local deformation using the Navier-Stokes equations, and in the study of the mechanism of energy cascade through the finite scale Lyapunov analysis of the relative motion between two particles. The analysis provides an explanation for the mechanism of energy cascade, leads to the closure of the von Kármán-Howarth equation, and describes the statistics of the velocity difference. Several tests and numerical results are presented.  相似文献   

12.
Experimental dual plane particle image velocimetry (PIV) data are assessed using direct numerical simulation (DNS) data of a similar flow with the aim of studying the effect of averaging within the interrogation window. The primary reason for the use of dual plane PIV is that the entire velocity gradient tensor and hence the full vorticity vector can be obtained. One limitation of PIV is the limit on dynamic range, while DNS is typically limited by the Reynolds number of the flow. In this study, the DNS data are resolved more finely than the PIV data, and an averaging scheme is implemented on the DNS data of similar Reynolds number to compare the effects of averaging inherent to the present PIV technique. The effects of averaging on the RMS values of the velocity and vorticity are analyzed in order to estimate the percentage of turbulence intensity and enstrophy captured for a given PIV resolution in turbulent boundary layers. The focus is also to identify vortex core angle distributions, for which the two-dimensional and three-dimensional swirl strengths are used. The studies are performed in the logarithmic region of a turbulent boundary layer at z + = 110 from the wall. The dual plane PIV data are measured in a zero pressure gradient flow over a flat plate at Re τ = 1,160, while the DNS data are extracted from a channel flow at Re τ = 934. Representative plots at various wall-normal locations for the RMS values of velocity and vorticity indicate the attenuation of the variance with increasing filter size. Further, the effect of averaging on the vortex core angle statistics is negligible when compared with the raw DNS data. These results indicate that the present PIV technique is an accurate and reliable method for the purposes of statistical analysis and identification of vortex structures.  相似文献   

13.
14.
HOMTY, a code for Large Eddy Simulation of homogeneous isotropic turbulence is proven by successful simulation of two experiments. The role of each term in the equations of motion and the concept of filtering is examined. It is shown that ‘prefiltering’ is unnecessary, and the resulting additional term in the equations, instead of transferring energy to the subgrid scales, backscatters energy from the resolved large wavenumerbers to the small ones. The kinetic energy decay exponent is shown to depend on the low wavenumber part of the velocity spectrum. Pressure statistics are computed and found to be in agreement with previous computations.  相似文献   

15.
A hybrid technique is presented that combines scanning PIV with tomographic reconstruction to make spatially and temporally resolved measurements of the fine-scale motions in turbulent flows. The technique uses one or two high-speed cameras to record particle images as a laser sheet is rapidly traversed across a measurement volume. This is combined with a fast method for tomographic reconstruction of the particle field for use in conjunction with PIV cross-correlation. The method was tested numerically using DNS data and with experiments in a large mixing tank that produces axisymmetric homogeneous turbulence at \(R_\lambda \simeq 219\) . A parametric investigation identifies the important parameters for a scanning PIV set-up and provides guidance to the interested experimentalist in achieving the best accuracy. Optimal sheet spacings and thicknesses are reported, and it was found that accurate results could be obtained at quite low scanning speeds. The two-camera method is the most robust to noise, permitting accurate measurements of the velocity gradients and direct determination of the dissipation rate.  相似文献   

16.
17.
We have studied the concentration distribution of microbubbles in forced isotropic turbulence. An initially uniform concentration field is shown to evolve to a highlyintermittent orspotty concentration distribution at long time due to the interactions of microbubbles with small-scale, intense, and coherent flow vortical structures. The maximum bubble concentration can be as large as 3,000 times the mean concentration and the local accumulations occur preferentially in the regions of high flow vorticity and low flow pressure. A quantitative measure of global nonuniformity in the concentration field is used to confirm that the preferential accumulation does follow Kolmogorov scaling, as opposed to the large-scale scaling commonly used for dispersion quantification.  相似文献   

18.
Pseudospectral simulations of homogeneous turbulence provide an important class of benchmark flow problems used for fundamental studies of turbulence and for numerical validation purposes. Depending on the numerical resolution, fully resolved computations of homogeneous turbulence can consume large amounts of central processing unit (CPU) time. Here, we present an approach analogous to adaptive mesh refinement for computations performed in physical space to adaptively refine the spectral resolution for pseudospectral computations of isotropic homogeneous turbulent flows. The method is applied to simulations of two-dimensional and three-dimensional isotropic homogeneous turbulence, and the results are compared with direct numerical simulations (DNS) performed using a fixed fine mesh. Significant savings in computational time are found in each case, with little to no compromise in the accuracy of the solutions.  相似文献   

19.
20.
Ultrasound particle image velocimetry (PIV) can be used to obtain velocity fields in non-transparent geometries and/or fluids. In the current study, we use this technique to document the flow in a curved tube, using ultrasound contrast bubbles as flow tracer particles. The performance of the technique is first tested in a straight tube, with both steady laminar and pulsatile flows. Both experiments confirm that the technique is capable of reliable measurements. A number of adaptations are introduced that improve the accuracy and applicability of ultrasound PIV. Firstly, due to the method of ultrasound image acquisition, a correction is required for the estimation of velocities from tracer displacements. This correction accounts for the fact that columns in the image are recorded at slightly different instances. The second improvement uses a slice-by-slice scanning approach to obtain three-dimensional velocity data. This approach is here demonstrated in a strongly curved tube. The resulting flow profiles and wall shear stress distribution shows a distinct asymmetry. To meaningfully interpret these three-dimensional results, knowledge of the measurement thickness is required. Our third contribution is a method to determine this quantity, using the correlation peak heights. The latter method can also provide the third (out-of-plane) component if the measurement thickness is known, so that all three velocity components are available using a single probe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号