首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermal performance of a nanofluid in a cooling chamber with variations of the nanoparticle diameter is numerically investigated. The chamber is filled with water and nanoparticles of alumina (Al2O3). Appropriate nanofluid models are used to approximate the nanofluid thermal conductivity and dynamic viscosity by incorporating the effects of the nanoparticle concentration, Brownian motion, temperature, nanoparticles diameter, and interfacial layer thickness. The horizontal boundaries of the square domain are assumed to be insulated, and the vertical boundaries are considered to be isothermal. The governing stream-vorticity equations are solved by using a secondorder central finite difference scheme coupled with the mass and energy conservation equations. The results of the present work are found to be in good agreement with the previously published data for special cases. This study is conducted for the Reynolds number being fixed at Re = 100 and different values of the nanoparticle volume fraction, Richardson number, nanofluid temperature, and nanoparticle diameter. The results show that the heat transfer rate and the Nusselt number are enhanced by increasing the nanoparticle volume fraction and decreasing the Richardson number. The Nusselt number also increases as the nanoparticle diameter decreases.  相似文献   

2.
The TiO_2-water based nanofluid flow in a channel bounded by two porous plates under an oblique magnetic field and variable thermal conductivity is formulated as a boundary-value problem(BVP). The BVP is analytically solved with the homotopy analysis method(HAM). The result shows that the concentration of the nanoparticles is independent of the volume fraction of TiO_2 nanoparticles, the magnetic field intensity, and the angle. It is inversely proportional to the mass diffusivity. The fluid speed decreases whereas the temperature increases when the volume fraction of the TiO_2 nanoparticles increases. This confirms the fact that the occurrence of the TiO_2 nanoparticles results in the increase in the thermal transfer rate. The fluid speed decreases and the temperature increases for both the pure water and the nanofluid when the magnetic field intensity and angle increase. The maximum velocity does not exist at the middle of the symmetric channel, which is in contrast to the plane-Poiseuille flow, but it deviates a little bit towards the lower plate, which absorbs the fluid with a very low suction velocity. If this suction velocity is increased, the temperature in the vicinity of the lower plate will be increased.An explicit expression for the friction factor-Reynolds number is then developed. It is shown that the Hartmann number of the nanofluid is smaller than that of pure water,while the Nusselt number of the nanofluid is larger than that of pure water. However,both the parameters increase if the magnetic field intensity increases.  相似文献   

3.
A square with a thermal square column is a simple but nontrivial research prototype for nanofluid research. However, until now, the effects of the temperature of the square column on the heat and mass transfer of nanofluids have not been revealed comprehensively, especially on entropy generation. To deepen insight into this important field, the natural convection of the SiO_2-water nanofluid in a square cavity with a square thermal column is studied numerically in this study. The effects of the thermal column temperature(T = 0.0, 0.5, 1.0, 1.5), the Rayleigh number(ranging from 10~3 to 10~6),and the volume fraction of the nanoparticle(varying from 0.01 to 0.04) on the fluid flow,heat transfer, and entropy generation are investigated, respectively. It is found that, no matter at a low or high Rayleigh number, the volume fraction of the nanoparticle shows no considerable effects on the flow field and temperature field for all the temperatures of the thermal column. With an increase in the volume fraction, the mean Nusselt number increases slightly. At the same time, it is found that, with an increase in the temperature of the thermal column, the average Nusselt number gradually decreases at all values of the Rayleigh number. Meanwhile, it is found that, at a high Rayleigh number, the heat transfer mechanism is the main parameter affecting the increase in the total entropy generation rather than the volume fraction. In addition, no matter at a high or low Rayleigh number, when T = 0.5, the total entropy generation is the minimum.  相似文献   

4.
The TiO2-water based nanofluid flow in a channel bounded by two porous plates under an oblique magnetic field and variable thermal conductivity is formulated as a boundary-value problem (BVP). The BVP is analytically solved with the homotopy analysis method (HAM). The result shows that the concentration of the nanoparticles is independent of the volume fraction of TiO2 nanoparticles, the magnetic field intensity, and the angle. It is inversely proportional to the mass diffusivity. The fluid speed decreases whereas the temperature increases when the volume fraction of the TiO2 nanoparticles increases. This confirms the fact that the occurrence of the TiO2 nanoparticles results in the increase in the thermal transfer rate. The fluid speed decreases and the temperature increases for both the pure water and the nanofluid when the magnetic field intensity and angle increase. The maximum velocity does not exist at the middle of the symmetric channel, which is in contrast to the plane-Poiseuille flow, but it deviates a little bit towards the lower plate, which absorbs the fluid with a very low suction velocity. If this suction velocity is increased, the temperature in the vicinity of the lower plate will be increased. An explicit expression for the friction factor-Reynolds number is then developed. It is shown that the Hartmann number of the nanofluid is smaller than that of pure water, while the Nusselt number of the nanofluid is larger than that of pure water. However, both the parameters increase if the magnetic field intensity increases.  相似文献   

5.
This paper uses thermal non-equilibrium model to study transient heat transfer by natural convection of a nanofluid over a vertical wavy surface. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. Three-temperature model is applied to represent the local thermal non-equilibrium among the particle, fluid, and solid-matrix phases. Finite difference method is used to solve the dimensionless governing equations of the problem. The obtained results are displayed in 2D graphs to illustrate the influences of the different physical parameters on local skin-friction coefficient, local Nusselt numbers for fluid, particle and solid phases and local Sherwood number. The results for velocity component, nanoparticle volume fraction, fluid temperature, particle temperature and solid-matrix temperature are presented in 3D graphs as a function of the axial and transverse coordinates. All the obtained results are discussed.  相似文献   

6.
In this numerical study, the effects of variable thermal conductivity models on the combined convection heat transfer in a two-dimensional lid-driven square enclosure are investigated. The fluid in the square enclosure is a water-based nanofluid containing alumina nanoparticles. The top and bottom horizontal walls are insulated, while the vertical walls are kept at different constant temperatures. Five different thermal conductivity models are used to evaluate the effects of various parameters, such as the nanofluid bulk temperature, nanoparticle size, nanoparticle volume fraction, Brownian motion, interfacial layer thickness, etc. The governing stream–vorticity equations are solved by using a second-order central finite difference scheme coupled with the conservation of mass and energy. It is found that higher heat transfer is predicted when the effects of the nanoparticle size and bulk temperature of the nanofluid are taken into account.  相似文献   

7.
《力学快报》2023,13(3):100432
Extensive improvements in small-scale thermal systems in electronic circuits, automotive industries, and microcomputers conduct the study of microsystems as essential. Flow and thermic field characteristics of the coherent nanofluid-guided microchannel heat sink are described in this perusal. The porous media approximate was used to search the heat distribution in the expanded sheet and Cu: γ - AlOOH/water. A hybrid blend of Boehme copper and aluminum nanoparticles is evaluated to have a cooling effect on the microchannel heat sink. By using Akbari Ganji and finite element methods, linear and non-linear differential equations as well as simple dimensionless equations have been analyzed. The purpose of this study is to investigate the fluid and thermal parameters of copper hybrid solution added to water, such as Nusselt number and Darcy number so that we can reach the best cooling of the fluid. Also, by installing a piece of fin on the wall of the heat sink, the coefficient of conductive heat transfer and displacement heat transfer with the surrounding air fluid increases, and the efficiency of the system increases. The overall results show that expanding values on the NP (series heat transfer fluid system maximizes performance with temperatures) volume division of copper, as well as boehmite alumina particles, lead to a decrease within the stream velocity of the Cu: AlOOH/water. Increasing the volume fraction of nanoparticles in the hybrid mixture decreases the temperature of the solid surface and the hybrid nanofluid. The Brownian movement improves as the volume percentage of nanoparticles in the hybrid mixture grows, spreading the heat across the environment. As a result, heat transmission rates rise. As the Darcy number increases, the thermal field for solid sections and Cu: AlOOH/water improves.  相似文献   

8.
A steady stagnation-point flow of an incompressible Maxwell fluid towards a linearly stretching sheet with active and passive controls of nanoparticles is studied numerically. The momentum equation of the Maxwell nanofluid is inserted with an external velocity term as a result of the flow approaches the stagnation point. Conventional energy equation is modified by incorporation of nanofluid Brownian and thermophoresis effects. The condition of zero normal flux of nanoparticles at the stretching surface is defined to impulse the particles away from the surface in combination with nonzero normal flux condition. A hydrodynamic slip velocity is also added to the initial condition as a component of the entrenched stretching velocity. The governing partial differential equations are then reduced into a system of ordinary differential equations by using similarity transformation. A classical shooting method is applied to solve the nonlinear coupled differential equations. The velocity, temperature and nanoparticle volume fraction profiles together with the reduced skin friction coefficient, Nusselt number and Sherwood number are graphically presented to visualize the effects of particular parameters. Temperature distributions in passive control model are consistently lower than in the active control model. The magnitude of the reduced skin friction coefficient, Nusselt number and Sherwood number decrease as the hydrodynamic slip parameter increases while the Brownian parameter has negligible effect on the reduced heat transfer rate when nanoparticles are passively controlled at the surface. It is also found that the stagnation parameter contributes better heat transfer performance of the nanofluid under both active and passive controls of normal mass flux.  相似文献   

9.
Natural convection heat transfer of nanofluids in horizontal enclosures heated from below is investigated theoretically. The main idea upon which the present work is based is that nanofluids behave more like a single-phase fluid rather than like a conventional solid-liquid mixture, which implies that all the convective heat transfer correlations available for single-phase flows can be extended to nanoparticle suspensions, provided that the thermophysical properties appearing in them are the nanofluid effective properties calculated at the reference temperature. In this connection, two empirical equations, based on a wide variety of experimental data reported in the literature, are developed for the evaluation of the nanofluid effective thermal conductivity and dynamic viscosity, whereas the other effective properties are evaluated by the traditional mixing theory. The heat transfer enhancement that derives from the dispersion of nano-sized solid particles into the base liquid is calculated for different operating conditions, nanoparticle diameters, and combinations of solid and liquid phases. One of the fundamental results is the existence of an optimal particle loading for maximum heat transfer across the bottom-heated enclosure. In particular, for any assigned combination of suspended nanoparticles and base liquid, it is found that the optimal volume fraction increases as the nanofluid average temperature increases, and may either increase or decrease with increasing the nanoparticle size according as the flow is laminar or turbulent. Moreover, the optimal volume fraction has a peak at a definite value of the Rayleigh number of the base fluid, that depends on both the average temperature of the nanofluid and the diameter of the suspended nanoparticles.  相似文献   

10.
An experimental investigation on the convective heat transfer and friction factor characteristics in the plain and dimpled tube under laminar flow with constant heat flux is carried out with distilled water and CuO/water nanofluids. For this, CuO nanoparticles with an average size of 15.3 nm were synthesized by sol–gel method. The nanoparticles are then dispersed in distilled water to form stable suspension of CuO/water nanofluid containing 0.1, 0.2 and 0.3% volume concentration of nanoparticles. It is found that the experimental Nusselt numbers for 0.1, 0.2 and 0.3% volume concentration of CuO nanoparticles are about 6, 9.9 and 12.6%, respectively higher than those obtained with distilled water in plain tube. However, the experimental Nusselt numbers for 0.1, 0.2 and 0.3% volume concentration of CuO nanoparticles are about 3.4, 6.8 and 12%, respectively higher than those obtained with distilled water in dimpled tube. The friction factor of CuO/water nanofluid is also increased due to the inclusion of nanoparticles and found to increase with nanoparticle volume concentration. The experimental results show that there exists a difference in the enhancement levels of Nusselt numbers obtained with nanofluids in plain tube and dimpled tube. Hence it is proposed that the mechanism of heat transfer enhancement obtained with nanofluids is due to particle migration from the core of fluid flow to tube wall.  相似文献   

11.
In order to ensure the normal work of electronic product, the thermal management is of key importance. Miniature loop heat pipe (mLHP) is a promising device of heat transfer for electronic products. Cu-water nanofluid with different concentration is used as working material in mLHP. Experiments are conducted to investigate its heat transfer performance. The heat flux owing to thermal diffusion is calculated. It is found that this heat flux and the boiling temperature are non-monotonic function of concentration of nanoparticle. Turning concentration appears at about 1.5 wt%. Differential equation of thermal diffusion produced by micro movement of nanoparticle is established in this paper. Average speed formula for nanoparticles is derived and slope of the curve of phase equilibrium is obtained. Based on the theoretical research in this paper, enhanced heat transfer mechanism of nanofluid is analyzed. The facts that heat flux owing to thermal diffusion and boiling temperature are all associated with nanoparticle concentration are also well explained with the aid of the derived theory in this paper.  相似文献   

12.
The steady laminar incompressible free convective flow of a nanofluid over a permeable upward facing horizontal plate located in porous medium taking into account the thermal convective boundary condition is studied numerically. The nanofluid model used involves the effect of Brownian motion and the thermophoresis. Using similarity transformations the continuity, the momentum, the energy, and the nanoparticle volume fraction equations are transformed into a set of coupled similarity equations, before being solved numerically, by an implicit finite difference numerical method. Our analysis reveals that for a true similarity solution, the convective heat transfer coefficient related with the hot fluid and the mass transfer velocity must be proportional to x −2/3, where x is the horizontal distance along the plate from the origin. Effects of the various parameters on the dimensionless longitudinal velocity, the temperature, the nanoparticle volume fraction, as well as on the rate of heat transfer and the rate of nanoparticle volume fraction have been presented graphically and discussed. It is found that Lewis number, the Brownian motion, and the convective heat transfer parameters increase the heat transfer rate whilst the thermophoresis decreases the heat transfer rate. It is also found that Lewis number and the convective heat transfer parameter enhance the nanoparticle volume fraction rate whilst the thermophoresis parameter decreases nanoparticle volume fraction rate. A very good agreement is found between numerical results of the present article for special case and published results. This close agreement supports the validity of our analysis and the accuracy of the numerical computations.  相似文献   

13.
This investigation describes the nanofluid flow in a non-Darcy porous medium between two stretching and rotating disks. A nanofluid comprises of nanoparticles of silver and copper. Water is used as a base fluid. Heat is being transferred with thermal radiation and the Joule heating. A system of ordinary differential equations is obtained by appropriate transformations. Convergent series solutions are obtained. Effects of various parameters are analyzed for the velocity and temperature. Numerical values of the skin friction coefficient and the Nusselt number are tabulated and examined. It can be seen that the radial velocity is affected in the same manner with both porous and local inertial parameters. A skin friction coefficient depicts the same impact on both disks for both nanofluids with larger stretching parameters.  相似文献   

14.
This work is focused on numerical simulations of natural convection heat transfer in Al2O3-water nanofluids using computational fluid dynamics approach. Fluent v6.3 is used to simulate water based nanofluid considering it as a single phase. Thermo-physical properties of the nanofluids are considered in terms of volume fraction and size of nanoparticles, size of base fluid molecule and temperature. The numerical values of effective thermal conductivity have also been compared with the experimental values available in the literature. The numerical result simulated shows decrease in heat transfer with increase in particle volume fraction. Computed result shows similar trend in increase of Nusselt number with Relayigh number as depicted by experimental results. Streamlines and temperature profiles are plotted to demonstrate the effect.  相似文献   

15.
In this paper, flow and heat transfer of a nanofluid over a stretching cylinder in the presence of magnetic field has been investigated. The governing partial differential equations with the corresponding boundary conditions are reduced to a set of ordinary differential equations with the appropriate boundary conditions using similarity transformation, which is then solved numerically by the fourth order Runge–Kutta integration scheme featuring a shooting technique. Different types of nanoparticles as copper (Cu), silver (Ag), alumina (Al2O3) and titanium oxide (TiO2) with water as their base fluid has been considered. The influence of significant parameters such as nanoparticle volume fraction, nanofluids type, magnetic parameter and Reynolds number on the flow and heat transfer characteristics is discussed. It was found that the Nusselt number increases as each of Reynolds number or nanoparticles volume fraction increase, but it decreases as magnetic parameter increase. Also it can be found that choosing copper (for small of magnetic parameter) and alumina (for large values of magnetic parameter) leads to the highest cooling performance for this problem.  相似文献   

16.
Coiled tubes and nanofludics are two significant techniques to enhance the heat transfer ability of thermal equipments. The forced convective heat transfer and the pressure drop of nanofluid inside straight tube and helical coiled one with a constant wall heat flux were studied experimentally. Distilled water was used as a host fluid and Nanofluids of aqueous TiO2 nanoparticles (50 nm) suspensions were prepared in various volume concentrations of 0.25–2 %. The heat transfer coefficient of nanofluids is obtained for different nanoparticle concentrations as well as various Reynolds numbers. The experiments covered a range of Reynolds number of 500–4,500. The results show the considerable enhancement of heat transfer rate, which is due to the nanoparticles present in the fluid. Heat transfer coefficient increases by increasing the volume concentration of nanoparticles as well as Reynolds number. Moreover, due to the curvature of the tube when fluid flows inside helical coiled tube instead of straight one, both convective heat transfer coefficient and the pressure drop of fluid grow considerably. Also, the thermal performance factors for tested nanofluids are greater than unity and the maximum thermal performance factor of 3.72 is found with the use of 2.0 % volume concentration of nanofluid at Reynolds number of 1,750.  相似文献   

17.
Natural convective heat transfer and fluid flow in a vertical rectangular duct filled with a nanofluid is studied numerically assuming the thermal conductivity to be dependent on the fluid temperature. The transport equations for mass, momentum and energy formulated in dimensionless form are solved numerically using finite difference method. Particular efforts have been focused on the effects of the thermal conductivity variation parameter, Grashof number, Brinkman number, nanoparticles volume fraction, aspect ratio and type of nanoparticles on the fluid flow and heat transfer inside the cavity. It is found that the flow was enhanced for the increase in Grashof number, Brinkman number and aspect ratio for any values of conductivity variation parameter and for regular fluid and nanofluid. The heat transfer rate for regular fluid is less than that for the nanofluid for all governing parameters.  相似文献   

18.
An experimental investigation on the convective heat transfer and friction factor characteristics in the plain and helically dimpled tube under turbulent flow with constant heat flux is presented in this work using CuO/water nanofluid as working fluid. The effects of the dimples and nanofluid on the Nusselt number and the friction factor are determined in a circular tube with a fully developed turbulent flow for the Reynolds number in the range between 2500 and 6000. The height of the dimple/protrusion was 0.6 mm. The effect of the inclusion of nanoparticles on heat transfer enhancement, thermal conductivity, viscosity, and pressure loss in the turbulent flow region were investigated. The experiments were performed using helically dimpled tube with CuO/water nanofluid having 0.1%, 0.2% and 0.3% volume concentrations of nanoparticles as working fluid. The experimental results reveal that the use of nanofluids in a helically dimpled tube increases the heat transfer rate with negligible increase in friction factor compared to plain tube. The experimental results showed that the Nusselt number with dimpled tube and nanofluids under turbulent flow is about 19%, 27% and 39% (for 0.1%, 0.2% and 0.3% volume concentrations respectively) higher than the Nusselt number obtained with plain tube and water. The experimental results of isothermal pressure drop for turbulent flow showed that the dimpled tube friction factors were about 2-10% higher than the plain tube. The empirical correlations developed for Nusselt number and friction factor in terms of Reynolds number, pitch ratio and volume concentration fits with the experimental data within ±15%.  相似文献   

19.
The present article considers a numerical study of thermal dispersion effect on the non-Darcy natural convection over a vertical flat plate in a fluid saturated porous medium. Forchheimer extension is considered in the flow equations. The coefficient of thermal diffusivity has been assumed to be the sum of molecular diffusivity and the dispersion thermal diffusivity due to mechanical dispersion. The non-dimensional governing equations are solved by the finite element method (FEM) with a Newton–Raphson solver. Numerical results for the details of the stream function, velocity and temperature contours and profiles as well as heat transfer rates in terms of Nusselt number are obtained. The study shows that the increase in thermal dispersion coefficient of the porous medium results in more heat energy to disperse away in the normal direction to the wall. This induces more fluid to flow along the wall, enhancing the heat transfer coefficient particularly near the wall.  相似文献   

20.
A nanofluid is composed of a base fluid component and nanoparticles, in which the nanoparticles are dispersed in the base fluid. The addition of nanoparticles into a base fluid can remarkably improve the thermal conductivity of the nanofluid, and such an increment of thermal conductivity can play an important role in improving the heat transfer rate of the base fluid. Further, the dynamics of non-Newtonian fluids along with nanoparticles is quite interesting with numerous industrial applications. The present predominately predictive modeling studies the flow of the viscoelastic Oldroyd-B fluid over a rotating disk in the presence of nanoparticles. A progressive amendment in the heat and concentration equations is made by exploiting the Cattaneo-Christov heat and mass flux expressions. The characteristic of the Lorentz force due to the magnetic field applied normal to the disk is studied. The Buongiorno model together with the Cattaneo-Christov theory is implemented in the Oldroyd-B nanofluid flow to investigate the heat and mass transport mechanism. This theory predicts the characteristics of the fluid thermal and solutal relaxation time on the boundary layer flow. The von K′arm′an similarity functions are utilized to convert the partial differential equations(PDEs) into ordinary differential equations(ODEs). A homotopic approach for obtaining the analytical solutions to the governing nonlinear problem is carried out. The graphical results are obtained for the velocity field, temperature, and concentration distributions. Comparisons are made for a limiting case between the numerical and analytical solutions, and the results are found in good agreement. The results reveal that the thermal and solutal relaxation time parameters diminish the temperature and concentration distributions, respectively. The axial flow decreases in the downward direction for higher values of the retardation time parameter. The impact of the thermophoresis parameter boosts the temperature distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号