首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This paper experimentally investigated the effect of rotating on the turbulent boundary layer flow using hot-wire. The experiments were completed in a rotating rig with a vertical axis and four measured positions along the streamwise direction in channel, which focuses on the flow flied in the rotating channel. The rotating effects on velocity profile, wall shear stress and semi-logarithmic mean velocity profile are discussed in this paper. The results indicated that: due to the Coriolis force induced by rotating, the phenomenon of velocity deficit happens near the leading side. The velocity deficit near the leading side, do not increase monotonically with the increase of Ro. The trend of the velocity deficit near the leading side is also affected by the normal component of pressure gradient, which is another important force in the cross-section of the rotating channel. The wall shear stress near the trailing side is larger than that on the leading side, and the semi-logarithmic mean velocity profile is also different under rotating effects. The phenomenon reveals that the effect of rotation penetrates into the logarithm region, and the flow near the leading side tends to turn into laminar under the effect of rotation. The rotation correction of logarithmic law is performed in current work, which can be used in the wall function of CFD to increase the simulating accuracy at rotating conditions.  相似文献   

2.
Summary The time-dependent, one-dimensional equation of heat conduction is solved for a slab of two layers in perfect thermal contact. At one boundary there is a constant heat flux into the slab, and at the other boundary there is a zero flux. The solution for the temperature distribution is obtained with the aid of the Laplace transformation.This work was supported by the U.S. Naval Weapons Evaluation Facility, Albuquerque, N. M., U.S.A.  相似文献   

3.
The influence of Coriolis force on heat transfer in a rotating transitional boundary layer has been experimentally investigated. The experiments have been conducted for local Görtler numbers up to 150. Heat transfer measurements have been performed for a flat plate with nearly uniform heat flux applied to the surface, where the temperature was measured by the thermochromic liquid crystal method. The results indicate that heat transfer is enhanced when Coriolis force acts towards the wall, i.e., on the pressure surface. The velocity measurements under equivalent conditions show that Coriolis instability induces counter-rotating longitudinal vortices which augment the lateral transport of the fluid on the pressure surface. On the other hand, the heat transfer on the suction surface remains at the same level as compared to the case without system rotation. As a consequence, the heat transfer coefficient on the pressure surface is 1.8 times higher than that measured on the suction surface when averaged over the measured surface.  相似文献   

4.
Summary Similarity conditions are presented for the solution of some problems of heat transfer in incompressible two-dimensional boundary layer flow. The treatment holds for forced convection as well as for free convection. For free convection no a priori restriction is made with respect to geometry or temperature distribution of the solid surface. For forced convection the treatment is restricted to uniform bulk flow parallel to a flat surface of non-uniform temperature or heat flux. The results are summarized in some tables that facilitate comparison with older work.  相似文献   

5.
The problem of steady laminar mixed convection boundary layer flow of an incompressible viscous fluid along vertical moving thin needles with variable heat flux for both assisting and opposing flow cases is theoretically considered in this paper. The governing boundary layer equations are first transformed into non-dimensional forms. The curvature effects are incorporated into the analysis whereas the pressure variation in the axial direction has been neglected. These equations are then transformed into similarity equations using the similarity variables, which are solved numerically using an implicit finite-difference scheme known as the Keller-box method. The solutions are obtained for a blunt-nosed needle (m = 0). Numerical calculations are carried out for various values of the dimensionless parameters of the problem, which include the mixed convection parameter λ, the Prandtl number Pr and the parameter a representing the needle size. It is shown from the numerical results that the skin friction coefficient, the surface (wall) temperature and the velocity and temperature profiles are significantly influenced by these parameters. The results are presented in graphical form and are discussed in detail.  相似文献   

6.
The stability of thermocapillary flow developed in a slowly rotating fluid layer under microgravity conditions is investigated. Both boundaries of the layer are free and assumed to be plane. The tangential thermocapillary Marangoni force exerts on the boundaries, where heat transfer takes place in accordance with the Newton law, the temperature of the medium in the neighborhood of the boundaries being a linear function of the coordinates. The axis of rotation is perpendicular to the liquid layer, rotation is weak so that the centrifugal force can be neglected. Being the solution of the Navier-Stokes equations, the thermocapillary flow in question can be described analytically. The neutral curves which describe the wavenumber dependence of the critical Marangoni number for various Taylor numbers and various directions of the horizontal temperature gradient on the layer boundaries are obtained within the framework of the linear stability theory. The behavior of finite-amplitude perturbations beyond the stability threshold is studied numerically.  相似文献   

7.
Effect of magnetic field on the formation of longitudinal vortices in mixed convection flow over a rotating heated flat plate is presented. The onset position is characterized by the Grashof number, the rotational number, the Prandtl number, the Eckert number, the magnetic field parameter, and the wave number. Negative rotation (clockwise) and external magnetic field stabilize the boundary layer flow. On the contrary, positive rotation (anti-clockwise), the Eckert number, and the Prandtl number destabilize the flow. The numerical data show agreement with the experimental data with the case of zero Hartmann number in the literature.  相似文献   

8.
9.
The mixed convection boundary layer of a viscoelastic fluid past a circular cylinder with constant heat flux is discussed. The boundary layer equations are an order higher than those for the Newtonian (viscous) fluid and the adherence boundary conditions are insufficient to determine the solution of these equations completely. The governing non-similar partial differential equations are transformed into dimensionless forms and then solved numerically using the Keller-box method by augmenting an extra boundary condition at infinity. Numerical results obtained in the form of velocity distributions and temperature profiles are presented for a range of values of the dimensionless viscoelastic fluid parameter. It is found that for some values of the viscoelastic parameter and some negative values of the mixed convection parameter (opposing flow) the momentum boundary layer separates from the cylinder. Heating the cylinder delays separation and can, if the cylinder is warm enough, suppress the separation completely. Similar to the case of a Newtonian fluid, cooling the cylinder brings the separation point nearer to the lower stagnation point.  相似文献   

10.
11.
12.
13.
A theoretical study is made of the critical curves for the onset of convection in a plane horizontal layer of liquid rotating with constant angular velocity for different conditions on the boundary of the layer. It is shown that, in contrast to Chandresekhar's curves [1] obtained under the condition of constancy of the temperature on the boundaries, the curves for a constant heat flux lie significantly lower, so that convection occurs earlier for all Taylor numbers. At large Taylor numbers all the stability curves, as in [1], tend to the asymptotes RC Ta2/3, where Ta is the Taylor number and RC is the critical Rayleigh number. A similar investigation for a nonrotating liquid was made in [2].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 124–129, May–June, 1988.We thank G. S. Golitsyn for the proposed subject and constant interest in the work.  相似文献   

14.
The exact solution of the problem of determining the optimal body shape for which the total thermal flux will be minimal for high supersonic flow about the body involves both computational and theoretical difficulties. Therefore, at the present time wide use is made of the inverse method, based on comparing the thermal fluxes for bodies of various specified form [1, 2]. The results of such calculations cannot always replace the solution of the direct variational problem. Therefore it is advisable to consider the direct variational problem of determining the form of a body with minimal thermal flux by using the approximate Newton formula for finding the gasdynamic parameters at the edge of the boundary layer. This approach has been used in finding the form of the body of minimal drag in an ideal fluid [3–5] arid with account for friction [6], and also for determining the form of a thin two-dimensional profile with minimal thermal flux for given aerodynamic characteristics [7].  相似文献   

15.
16.
The study considers plane steady flow of an incompressible fluid around a circular cylinder rotating in a homogeneous free stream. On the basis of an asymptotic analysis of the Navier-Stokes equations for high Reynolds numbers, it is shown that at a certain value of the angular velocity of the cylinder an interaction arises between the flow in the boundary layer and the external potential flow. A solution is obtained numerically which describes the flow in the region of interaction.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 36–45, September–November, 1987.  相似文献   

17.
The effects of suction or blowing at the surface of a rotating cone in a quiet fluid on the skin friction and heat transfer are described. The equations which govern the fluid motion and thermal energy transfer are transformed by the boundary layer approximations and the resulting equations are solved under the condition that the suction or blowing velocity varies as x n (x: distance measured from the apex of the cone, n: arbitrary constant). The solutions are obtained as a perturbation from the basic laminar flow of an incompressible viscous fluid over the impermeable rotating cone. Detailed numerical calculations are performed for the case of an isothermal rotating cone with uniform blowing or suction, i.e. n=0, the Prandtl number being 0.72. Results are given for the shear stress, heat transfer and velocity and temperature fields. It is shown from the analysis that suction sharply increases the circumferential shear stress and the heat transfer at the surface.Nomenclature c proportional constant - C fx dimensionless skin friction factor, x /(V 2) - C fx0 dimensionless skin friction factor for an impermeable cone - C fy dimensionless circumferential skin friction factor, y /(V 2) - C fy0 dimensionless circumferential skin friction factor for an impermeable cone - c p specific heat at constant pressure - f k function of - g k function of - h heat transfer coefficient, q/(T wT ) - k thermal conductivity of fluid - n arbitrary constant - Nu x local Nusselt number, hx/k - Nu x0 local Nusselt number for an impermeable cone - Pr Prandtl number - q heat transfer rate - r radius of a circular cross section of the cone, x sin - R x Reynolds number, Vx/ - T temperature - T w surface temperature of the cone - T temperature of the surrounding fluid - u fluid velocity in x-direction - v fluid velocity in y-direction - V circumferential velocity at the cone surface, r - w fluid velocity in z-direction - x coordinate along meridional section - y coordinate along a circular cross section - z coordinate perpendicular to both x and y - perturbation parameter, cx n /(x sin )1/2 - dimensionless z-coordinate, z( sin /)1/2 - k function of - kinematic viscosity - density of fluid - x skin friction in x-direction - y circumferential skin friction - stream function - angular speed of the cone  相似文献   

18.
The induced unsteady flow due to a stretching surface in a rotating fluid, where the unsteadiness is caused by the suddenly stretched surface is studied in this paper. After a similarity transformation, the unsteady Navier–Stokes equations have been solved numerically using the Keller-box method. Also, the perturbation solution for small times as well as the asymptotic solution for large times, when the flow becomes steady, has been obtained. It is found that there is a smooth transition from the small time solution to the large time or steady state solution.  相似文献   

19.
The experimental study of the turbulent boundary layer under external flow conditions similar to those found on the suction side of airfoils in trailing-edge post-stall conditions has been performed. Detailed boundary layer measurements were carried out with a PIV system and a two-sensor wall probe. They cover the region downstream of the suction peak where the boundary layer is subjected to a very strong adverse pressure gradient and has suffered from an abrupt transition from strong favorable to strong adverse pressure gradients. The experiments show that in spite of these severe conditions, the boundary layer is surprisingly able to recover a state of near-equilibrium before separating. In this near-equilibrium zone, the mean velocity defect and all the measured Reynolds stresses are self-similar (in the outer region) with respect to the outer scales δ and U e δ*/δ. The mean momentum balance indicates that for the upper half of the outer region, the advection terms dominate all the stress-gradient terms in the zone prior to separation. A large portion of the outer region has therefore become essentially an inertial flow zone where an approach toward equilibrium is expected.An erratum to this article can be found at  相似文献   

20.
The boundary layer stretched flow of a Jeffrey fluid subject to the convective boundary conditions was investigated. The governing dimensionless problems were computed by using the homotopy analysis approach. Convergence of the derived solutions was checked and the influence of embedded parameters was analyzed by plotting graphs. It was noticed that the velocity increases with an increase in the Deborah number. Furthermore, it was found that the temperature is also an increasing function of the Biot number. We further found that for fixed values of other parameters, the local Nusselt number increases by increasing the suction parameter and Deborah number. Numerical values of the skin friction coefficient and local Nusselt numbers were computed and examined. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号