首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies on flow-induced vibrations in large tube bundles are usually focused solely on frequency analysis, without considering the flow patterns which are responsible for the fluid forces. Furthermore, investigations which involve variations in the spacing ratios do not separate transversal and longitudinal proximity effects. The purpose of this article is to separately analyze the influence of the transversal (T/D) and longitudinal (L/D) spacing ratios of a confined in-line cylinder array with five rows on the flow characteristics and to identify flow patterns. The laser Doppler anemometry technique was employed to acquire the mean velocity and its fluctuations in the transversal and longitudinal directions between the cylinder rows. Strouhal numbers and regimes reported in the literature were identified in the experiments. The same regime did not always persist along all cylinder rows for a given spacing ratio, as a result of the combined longitudinal and transversal proximity effects and also of the generation of turbulence by the array. For the smallest T/D ratio, a quasi-steady behavior associated with the biased flow pattern was noted in the experimental set-up and flip-flopping was observed in one case. Additionally, the flow characteristics in these arrays diverged from tube bundle classifications described in the literature. The behavior of the fluid forces and susceptibility to vibrations in the array were predicted based on the turbulence intensity of the incident flow of the cylinders. The results reinforced the need to extend flow pattern investigations to arrays with more cylinder rows and to consider both transversal and longitudinal proximity effects, when studying flow-induced vibrations.  相似文献   

2.
It is well known from a lot of experimental data that fluid forces acting on two tandem circular cylinders are quite different from those acting on a single circular cylinder. Therefore, we first present numerical results for fluid forces acting on two tandem circular cylinders, which are mounted at various spacings in a smooth flow, and second we present numerical results for flow-induced vibrations of the upstream circular cylinder in the tandem arrangement. The two circular cylinders are arranged at close spacing in a flow field. The upstream circular cylinder is elastically placed by damper-spring systems and moves in both the in-line and cross-flow directions. In such models, each circular cylinder is assumed as a rigid body. On the other hand, we do not introduce a turbulent model such as the Large Eddy Simulation (LES) or Reynolds Averaged Navier-Stokes (RANS) models into the numerical scheme to compute the fluid flow. Our numerical procedure to capture the flow-induced vibration phenomena of the upstream circular cylinder is treated as a fluid-structure interaction problem in which the ideas of weak coupling is taken into consideration.  相似文献   

3.
Experiments have been carried out to investigate the flow-induced vibration response of a flexibly mounted circular cylinder located in the vicinity of a larger cylinder and subjected to cross-flow. The interfering larger cylinder was placed upstream and had a diameter twice that of the vibrating cylinder. Complex interaction was observed between the flow over the two cylinders. The vibration responses of the flexible cylinder were classified into different regimes according to the relative positions of the two cylinders. In the-side-by-side arrangement and the tandem or near-tandem arrangement, flow-induced vibrations of the flexible cylinder were greatly suppressed. In the staggered arrangement which covered a large portion of the relative cylinder positions being investigated, vibrations of the smaller cylinder were greatly amplified. The vibration response curves were also largely modified with a broadening of the lock-in resonance range. A shift of the peak reduced velocity for maximum vibration response was also found. Flow visualizations and wake velocity measurements suggested that the modifications of the vibration responses were related to the presence or absence of constant or intermittent flow through the gap region between the two cylinders. The proposed mechanisms of flow interactions and the resulting vibration response characteristics could explain previous observations on flow-induced vibrations of two equal-sized circular cylinders reported in the literature.  相似文献   

4.
基于计算流体动力学理论,运用大涡模拟方法对雷诺数Re=3900三维正方形排列四圆柱体结构群的绕流问题进行数值计算,主要分析来流攻角与间距比两个参数对四圆柱体结构群流体参数及流场模态的影响。结果表明:来流攻角与间距比均对四圆柱体结构群绕流特性有较强的影响;来流攻角θ=0°、22.5°、45°下,临界间距比分别为3.5、4.0、3.0;间距比的变化会导致下游圆柱表面压力系数分布发生改变;另一方面,间距比较小时,四圆柱体结构之间的互扰作用均以临近效应为主;随间距比增大,上游圆柱尾流对下游圆柱有显著影响,其互扰作用会转变尾激效应。  相似文献   

5.
Experimental and numerical studies were carried out to investigate forced convection heat transfer and flow features around the downstream elliptic cylinder in four staggered cylinders in cross flow. The elliptic cylinders examined had an axis ratio (b/c) of 1:2, and they were arranged with zero angle of attack to the upstream flow. The present heat transfer measurements were obtained by heating only the downstream elliptic cylinder (test cylinder) under the condition of constant heat flux. The testing fluid was air and the Reynolds number based on the major axis length (c) was ranged from 4,000 to 45,570. The tested longitudinal spacing ratio (Sx/c) and the transversal spacing ratio (Sy/b) were in the ranges of 1.5 ≤ Sx/c ≤ 4.0 and 1.5 ≤ Sy/b ≤ 4.0, respectively. The air flow pattern and temperature fields around the four staggered elliptic cylinders were predicted by using CFD software package. Also, a flow visualization study was made to show the flow features around the elliptic cylinders. It was observed that Num of the downstream elliptic cylinder in four staggered cylinders was higher than that of three in-line cylinders for all tested spacing ratios and Reynolds numbers except for Re = 4,000. It was clear that, at lower Reynolds number values (Re < 14,100), the average Nusselt number of the downstream elliptic cylinder in three staggered arrangement was higher than that of the downstream cylinder in four staggered arrangement for all tested spacing ratios. On the other hand, at Re > 14,100, the tested elliptic cylinder in four staggered arrangement had the higher values of the average Nusselt number. Moreover, in four staggered arrangement, the maximum average Nusselt number enhancement ratio (average Nusselt number of the tested downstream cylinder/average Nusselt number of a single elliptic cylinder) was found to be about 2.0, and was obtained for spacing ratios of Sx/c = 2.5, Sy/b = 2.5 and at Re = 32,000. Finally, the average Nusselt number of the tested cylinder in four staggered arrangement was correlated in terms of Reynolds number and cylinder spacing ratios.  相似文献   

6.
In this paper, wind tunnel experiments were conducted to measure the mean force coefficients and Strouhal numbers for three circular cylinders of equal diameters in an equilateral-triangular arrangement when subjected to a cross-flow. These experiments were carried out at five subcritical Reynolds numbers ranging from 1.26 × 104 to 6.08 × 104. The pressure distributions on the surface of the cylinders were measured using pressure transducers. Furthermore, the hot-wire anemometer was employed to measure the vortex shedding frequencies behind each cylinder. Six spacing ratios (l/d) varying from 1.5 to 4 were investigated. It is observed that for l/d > 2, the upstream cylinder experiences a lower mean drag coefficient compared with the downstream cylinders. The minimum values of the drag coefficient for the downstream cylinders occur at l/d = 1.5 and l/d = 2, because there is no vortex shedding from the foregoing cylinders. Also, the value of the pressure coefficient behind the upstream cylinder reduces by increasing l/d. Moreover, by decreasing the value of l/d, the Strouhal number for the upstream cylinder increases. It can be concluded that the flow pattern and aerodynamic coefficients are basically dependent on l/d; in other words, decreasing l/d results in an increase in the effects of the flow interference between the cylinders.  相似文献   

7.
A free-vibration experiment was conducted to examine flow-induced vibration (FIV) characteristics of two identical circular cylinders in side-by-side arrangements at spacing ratio T (=T/D)=0.1–3.2, covering all possible flow regimes, where T is the gap spacing between the cylinders and D is the cylinder diameter. Each of the cylinders was two-dimensional, spring mounted, and allowed to vibrate independently in the cross-flow direction. Furthermore, an attempt to suppress flow-induced vibrations was undertaken by attaching flexible sheets at the rear stagnation lines of the cylinders. Based on the vibration responses of the two cylinders, four vibration patterns I, II, III and IV are identified at 0.1≤T<0.2, 0.2≤T≤0.9, 0.9<T<2.1 and 2.1≤T≤3.2, respectively. Pattern I is characterized by the two cylinders vibrating inphase, with the maximum amplitudes occurring at the same reduced velocity Ur=10.47 almost two times that (Ur=5.25) for an isolated cylinder. Pattern II features no vibration generated for either cylinder. Pattern III exemplifies the occurrence of the maximum vibration amplitude of a cylinder at a smaller Ur and that of the other cylinder at a higher Ur compared to its counterpart in an isolated cylinder. Pattern IV represents each cylinder response resembling an isolated cylinder response; the vibrations of the two cylinders are, however, coupled inphase or antiphase. Linking maximum vibration amplitudes to fluctuating lift forces acting on fixed cylinders reveals that fluid–structure interactions between two fixed cylinders and between two elastic cylinders are not the same, even though vibration is not significant. As such, while two fixed cylinders generate narrow and wide wakes at 0.2≤T<1.7, two elastic cylinders do the same for a longer range of T (0.2≤T<2.1). The flexible sheets effectively suppress FIV of the two cylinders in patterns III and IV, and reduce the vibration amplitude in pattern I. For the effectively controlled cases (patterns III and IV), the flexible sheet of each cylinder folds into a semicircle at the base, forming two free edges.  相似文献   

8.
The flow over two square cylinders in staggered arrangement is simulated numerically at a fixed Reynolds number (\(Re =150\)) for different gap spacing between cylinders from 0.1 to 6 times a cylinder side to understand the flow structures. The non-inclined square cylinders are located on a line with a staggered angle of \(45^{\circ }\) to the oncoming velocity vector. All numerical simulations are carried out with a finite-volume code based on a collocated grid arrangement. The effects of vortex shedding on the various features of the flow field are numerically visualized using different flow contours such as \(\lambda _{2}\) criterion, vorticity, pressure and magnitudes of velocity to distinguish the distinctive flow patterns. By changing the gap spacing between cylinders, five different flow regimes are identified and classified as single body, periodic gap flow, aperiodic, modulated periodic and synchronized vortex shedding regimes. This study revealed that the observed multiple frequencies in global forces of the downstream cylinder in the modulated periodic regime are more properly associated with differences in vortex shedding frequencies of individual cylinders than individual shear layers reported in some previous works; particularly, both shear layers from the downstream cylinder often shed vortices at the same multiple frequencies. The maximum Strouhal number for the upstream cylinder is also identified at \({G}^{*}=1\) for aperiodic flow pattern. Furthermore, for most cases studied, the downstream cylinder experiences larger drag force than the upstream cylinder.  相似文献   

9.
Wind tunnel experiments were conducted to measure the vortex shedding frequencies for two circular cylinders of finite height arranged in a staggered configuration. The cylinders were mounted normal to a ground plane and were partially immersed in a flat-plate turbulent boundary layer. The Reynolds number based on the cylinder diameter was ReD=2.4×104, the cylinder aspect ratio was AR=9, the boundary layer thickness relative to the cylinder height was δ/H=0.4, the centre-to-centre pitch ratio was varied from P/D=1.125 to 5, and the incidence angle was incremented in small steps from α=0° to 90°. The Strouhal numbers were obtained behind the upstream and downstream cylinders using hot-wire anemometry. From the behaviour of the Strouhal number data obtained at the mid-height position, the staggered configuration could be broadly classified by the pitch ratio as closely spaced (P/D<1.5), moderately spaced (1.5?P/D?3), or widely spaced (P/D>3). The closely spaced staggered finite cylinders were characterized by the same Strouhal number measured behind both cylinders, an indication of single bluff-body behaviour. Moderately spaced staggered finite cylinders were characterized by two Strouhal numbers at most incidence angles. Widely spaced staggered cylinders were characterized by a single Strouhal number for both cylinders, indicative of synchronized vortex shedding from both cylinders at all incidence angles. For selected staggered configurations representative of closely spaced, moderately spaced, or widely spaced behaviour, Strouhal number measurements were also made along the vertical lengths of the cylinders, from the ground plane to the free end. The power spectra showed that for certain cylinder arrangements, because of the influences of the cylinder–wall junction and free-end flow fields, the Strouhal numbers and flow patterns change along the cylinder.  相似文献   

10.
本文通过流动显示,热线测频和流体动载荷测量在水槽中研究了绕经不同柱间距比S/D(S为双柱间距,D为柱体截面宽)串列双方柱体流动特性。实验雷诺数为Re=6×10~3,柱间距比0.5≤S/D≤10实验测量了涡脱落频率、时间平均阻力、动态阻力和动态升力。通过实验结果综合分析给出临界柱间距范围2.5≤(S/D)_(cr)≤3.0,并将串列双方柱流动随柱间距的变化划分为二种流态区。在临界柱间距,作用于双柱体的流体载荷、涡脱落频率以及流谱都发生跃变。文中分析讨论了两个流态区的特性以及在临界柱间距出现的双稳态特性。  相似文献   

11.
A large eddy simulation (LES) study was conducted to investigate the three-dimensional characteristics of the turbulent flow past wavy cylinders with yaw angles from 0° to 60° at a subcritical Reynolds number of 3900. The relationships between force coefficients and vortex shedding frequency with yaw angles for both wavy cylinders and circular cylinders were investigated. Experimental measurements were also performed for the validation of the present LES results. Comparing with corresponding yawed circular cylinders at similar Reynolds number, significant differences in wake vortex patterns between wavy cylinder and circular cylinder were observed at small yaw angles. The difference in wake pattern becomes insignificant at large yaw angles. The mean drag coefficient and the Strouhal number obey the independence principle for circular cylinders at yaw angle less than 45°, while the independence principle was found to be unsuitable for yawed wavy cylinders. In general, the mean drag coefficients and the fluctuating lift coefficients of a yawed wavy cylinder are less than those of a corresponding yawed circular cylinder at the same flow condition. However, with the increase of the yaw angle, the advantageous effect of wavy cylinder on force and vibration control becomes insignificant.  相似文献   

12.
This paper presents a selective review of recent research on vortex-induced vibrations of isolated circular cylinders and the flow and vibration of circular cylinders in a tandem arrangement; a common thread being that the topics raised are of particular interest to the author. The influence of Reynolds number on the response of isolated cylinders is presented and recent developments using forced vibration are discussed. The response of a cylinder free to respond in the in-line and transverse directions is contrasted with that of a cylinder responding in only one direction. The interference between two circular cylinders is discussed and prominence given to the case of cylinders in a tandem arrangement. The origin of the time–mean lift force on the downstream cylinder is considered together with the cause of the large amplitude transverse vibration experienced by the cylinder above vortex resonance. This wake-induced vibration is shown to be a form of vortex-induced vibration.  相似文献   

13.
We numerically investigate flow-induced vibrations of circular cylinders arranged in a tandem configuration at low Reynolds number. Results on the coupled force dynamics are presented for an isolated cylinder and a pair of rigid cylinders in a tandem configuration where the downstream cylinder is elastically mounted and free to vibrate transversely. Contrary to turbulent flows at high Reynolds number, low frequency component with respect to shedding frequency is absent in laminar flows. Appearance and disappearance of the vorticity regions due to reverse flow on the aft part of the vibrating cylinder is characterized by a higher harmonic in transverse load, which is nearly three times of the shedding frequency. We next analyze the significance of pressure and viscous forces in the composition of lift and their phase relations with respect to the structural velocity. For both the isolated and tandem vibrating cylinders, the pressure force supplies energy to the moving cylinder, whereas the viscous force dissipates the energy. Close to the excitation frequency ratio of one, the ratio of transverse viscous force to pressure force is found to be maximum. In addition, movement of stagnation point plays a major role on the force dynamics of both configurations. In the case of isolated cylinder, displacement of the stagnation point is nearly in-phase with the velocity. During vortex-body interaction, the phase difference between the transverse pressure force and velocity and the location of stagnation point determines the loads acting on the cylinder. When the transverse pressure force is in-phase with velocity, the stagnation point moves to higher suction region of the cylinder. In the case of the tandem cylinder arrangement, upstream vortex shifts the stagnation point on the downstream cylinder to the low suction region. Thus a larger lift force is observed for the downstream cylinder as compared to the vibrating isolated cylinder. Phase difference between the transverse load and the velocity of the downstream cylinder determines the extent of upstream wake interaction with the downstream cylinder. When the cylinder velocity is in-phase with the transverse pressure load component, interaction of wake vortex with the downstream cylinder is lower compared to other cases considered in this study. We extend our parametric study of tandem cylinders for the longitudinal center-to-center spacing ranging from 4 to 10 diameter.  相似文献   

14.
Vortex induced vibrations of two equal-sized cylinders in tandem and staggered arrangement placed in uniform incompressible flow is studied. A stabilized finite element formulation is utilized to solve the governing equations. The Reynolds number for these 2D simulations is 1000. The cylinders are separated by 5.5 times the cylinder diameter in the streamwise direction. For the staggered arrangement, the cross-flow spacing between the two cylinders is 0.7 times the cylinder diameter. In this arrangement, the downstream cylinder lies in the wake of the upstream one and therefore experiences an unsteady inflow. The wake looses its temporal periodicity, beyond a few diameters downstream of the front cylinder. The upstream cylinder responds as an isolated single cylinder while the downstream one undergoes disorganized motion. Soft-lock-in is observed in almost all the cases.  相似文献   

15.
Two-degree-of-freedom vortex induced vibrations (VIVs) of two identical spring-supported circular cylinders in proximity with the mass ratio of 2 and zero damping at Re of 100 are numerically studied. Totally 20 arrangements of cylinders are investigated combining four stagger angles and five normalized center-to-center spacings. Results show that the in-line vibration amplitude is comparable to the transverse one for most arrangements and usually accompanies irregular cylinder trajectories. Extremely slender figure-8 cylinder trajectories usually seen in single-cylinder VIVs exist only for the tandem arrangements. Arranging the trailing cylinder to vibrate near the wake boundary of the leading cylinder enhances the possibility of irregular trajectories and impacts of both cylinders. Impact between cylinders must occur in cases with irregular cylinder trajectories; however, irregular cylinder trajectories could be found in impact-free cases. The stagger angle significantly changes the attribute of the transverse vibration frequency, toward either the single-cylinder VIV frequency or natural structure frequency in still fluid. The major transverse vibration frequency and the natural structure frequency in still fluid are decoupled for all the side-by-side arrangements and some far spaced tandem arrangements and highly correlated for non-tandem and non-side-by-side arrangements. The time-averaged impact frequency increases with decreasing normalized center-to-center spacing for most combinations of stagger angle and reduced velocity. Apart from the side-by-side arrangements, high-frequency impacts occur when the trailing cylinder is initially located in or near the wake zone of the leading cylinder. The mechanism of trailing cylinder chopping the gap-flow vortices plays an important role in determining the near-wake vortex structures for all non-side-by-side arrangements.  相似文献   

16.
This paper presents a numerical study of three-dimensional (3-D) laminar flow around four circular cylinders in an in-line square configuration. The investigation focuses on effects of spacing ratio (L/D) and aspect ratio (H/D) on 3-D flow characteristics, and the force and pressure coefficients of the cylinders. Extensive 3-D numerical simulations were performed at Reynolds number of 200 for L/D from 1.6 to 5.0 at H/D=16 and H/D from 6 to 20 at L/D=3.5. The results show that the 3-D numerical simulations have remedied the inadequacy of 2-D simulations and the results are in excellent agreement with the experimental results. The relation between 3-D flow patterns and pressure characteristics around the four cylinders is examined and discussed. The critical spacing ratio for flow pattern transformation was found to be L/D=3.5 for H/D=16, while a bistable wake pattern was observed at L/D=1.6 for the same aspect ratio. Moreover, a transformation of flow pattern from a stable shielding flow pattern to a vortex shedding flow pattern near the middle spanwise positions of the cylinders was observed and was found to be dependent on the aspect ratio, spacing ratio, and end wall conditions. Due to the highly 3-D nature of the flows, different flow patterns coexist over different spanwise positions of the cylinders even for the same aspect ratio. It is concluded that spacing ratio, aspect ratio, and the no-slip end wall condition have important combined effects on free shear layer development of the cylinders and hence have significant effects on the pressure field and force characteristics of the four cylinders with different spacing ratios and aspect ratios.  相似文献   

17.
This paper presents the unsteady laminar forced convection heat transfer from a row of five isothermal square cylinders placed in a side-by-side arrangement at a Reynolds number of 150. The numerical simulations are performed using a finite volume code based on the PISO algorithm in a collocated grid system. Special attention is paid to investigate the effect of the spacing between the cylinders on the overall transport processes for the separation ratios (spacing to size ratio) between 0.2 and 10. No significant interaction between the wakes is observed for spacing greater than four times the diameter at this Reynolds number. However, at smaller spacing, the wakes interact in a complicated manner resulting different thermo-hydrodynamic regimes. The vortex structures and isotherm patterns obtained are systematically presented and discussed for different separation ratios. In addition, the mean and instantaneous drag and lift coefficients, mean and local Nusselt number and Strouhal number are determined and discussed for various separation ratios. A new correlation is derived for mean Nusselt number as a function of separation ratio for such flows.  相似文献   

18.
基于四步半隐式特征线分裂算子有限元方法,对Re=100时,剪切来流作用下串列三圆柱体双自由度流致振动问题进行了数值计算. 首先,与现有文献结果进行对比验证该方法的正确性. 然后,着重分析剪切率、固有频率比和折减速度三个关键参数对串列三圆柱体结构流致动力响应及流场特性的影响. 数值计算结果表明:剪切率、固有频率比与折减速度对结构振幅和运动轨迹的影响较大. 随剪切率的增大,上游圆柱最大振幅的变化与单圆柱工况类似. 中下游圆柱最大振幅会增大且会出现双向共振现象,同时,发生共振响应区域会扩大. 随固有频率比的增大,上游圆柱顺流向锁定区间范围会减小,而中下游圆柱双向锁定区间会扩大. 另一方面,均匀来流作用下,结构运动轨迹以"8"字形和不规则形状为主. 随剪切率的增大,锁定区间内运动轨迹会由"8"字形转变为"雨滴"形. 在大剪切率与高固有频率比工况下,中游圆柱体结构运动轨迹会出现"双雨滴"形状. 最后,通过对流场特性的分析,揭示了剪切来流作用下串列三圆柱结构流致运动响应的内在机理.   相似文献   

19.
Two-dimensional numerical simulations of flow past two unequal-sized circular cylinders in tandem arrangement are performed at low Reynolds numbers (Re). The upstream larger cylinder is stationary, while the downstream cylinder has both one (transverse-only) and two (transverse and in-line) degrees of freedom (1-dof and 2-dof, respectively). The Re, based on the free stream velocity U and the downstream cylinder diameter d, varies between 50 and 200 with a wide range of reduced velocities Ur. The diameter of the upstream cylinder is twice that of the downstream cylinder, and the center-to-center spacing is 5.5d. In general, for the 1-dof case, the calculations show that the wake-induced vibrations (WIV) of the downstream cylinder are greatly amplified when compared to the case of a single cylinder or two equal-sized cylinders. The transverse amplitudes build up to a significantly higher level within and beyond the lock-in region, and the Ur associated with the peak amplitude shifts toward a higher value. The dominant wake pattern is 2S mode for Re=50 and 100, while with the increase of Re to 150 and 200, the P+S mode can be clearly observed at some lower Ur. For the 2-dof vibrations, the transverse response characteristics are similar to those presented in the corresponding 1-dof case. The in-line responses are generally much smaller, except for several significant vibrations resulting from in-line resonance. The obvious in-line vibration may induce a C (chaotic) vortex shedding mode for higher Re (Re=200). With regard to the 2-dof motion trajectories, besides the typical figure-eight pattern, several odd patterns such as figure-double eight and single-looped trajectories are also obtained due to the wake interference effect.  相似文献   

20.
并列双圆柱流致振动的不对称振动和对称性迟滞研究   总被引:2,自引:0,他引:2  
对雷诺数Re = 100 间距比s/D = 2.5 和5.0 的并列双圆柱流致振动进行了数值模拟研究, 其中圆柱质量比m = 2.0, 折合流速Ur 在2.0~10.0 之间, 两圆柱仅能做横流向振动. 研究发现, 当间距比s/D = 2.5 时, 在折合流速4.4 < Ur< 4.8区间内, 两圆柱流致振动响应出现不对称振动现象, 在折合流速4.4 < Ur< 4.8 区间内, 两圆柱流致振动响应出现对称性迟滞现象; 而当间距比s/D = 2.5时, 圆柱流致振动响应与单圆柱涡激振动响应相似, 没有出现不对称振动和对称性迟滞现象. 在不对称振动区间内, 两圆柱的升、阻力参数也出现了不相等的情况. 此外, 当两圆柱不对称振动时, 圆柱间隙流稳定地偏斜向其中的一个圆柱; 相应地, 尾涡也出现了宽窄不等的模式. 窄尾流圆柱的振幅和升、阻力均较宽尾流圆柱的大. 通过对比不对称振动现象发生前后的尾涡模式, 对新现象的产生机制进行了阐述.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号