首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Mechanism of phototriggered isomerization of azobenzene and its derivatives is of broad interest. In this paper, the S(0) and S(1) potential energy surfaces of the ethylene-bridged azobenzene (1) that was recently reported to have highly efficient photoisomerization were determined by ab initio electronic structure calculations at different levels and further investigated by a semiclassical dynamics simulation. Unlike azobenzene, the cis isomer of 1 was found to be more stable than the trans isomer, consistent with the experimental observation. The thermal isomerization between cis and trans isomers proceeds via an inversion mechanism with a high barrier. Interestingly, only one minimum-energy conical intersection was determined between the S(0) and S(1) states (CI) for both cis → trans and trans → cis photoisomerization processes and confirmed to act as the S(1) → S(0) decay funnel. The S(1) state lifetime is ~30 fs for the trans isomer, while that for the cis isomer is much longer, due to a redistribution of the initial excitation energies. The S(1) relaxation dynamics investigated here provides a good account for the higher efficiency observed experimentally for the trans → cis photoisomerization than the reverse process. Once the system decays to the S(0) state via CI, formation of the trans product occurs as the downhill motion on the S(0) surface, while formation of the cis isomer needs to overcome small barriers on the pathways of the azo-moiety isomerization and rotation of the phenyl ring. These features support the larger experimental quantum yield for the cis → trans photoisomerization than the trans → cis process.  相似文献   

2.
The photoirradiation of trans‐ and cis‐poly(dimethylsilylenephenylenevinylene)s gave cis‐rich mixtures at equilibrium states. The degree of the photoisomerization could be exactly evaluated by comparing the UV spectra of the photoirradiated solutions with those of the trans and cis polymers. The geometric configuration of the trans and cis polymers was thermally stable and hardly changed even though they were heated. The trans and cis polymers exhibited different emission properties; e.g., trans polymer: λmax = 400 nm, quantum yield = 3.4×10–3; cis polymer: λmax = 380 nm, quantum yield = 1.5×10–3.  相似文献   

3.
A cyclophane incorporating one 1,5-dioxynaphthalene ring system and one tetrathiafulvalene (TTF) unit bridged by [SCH(2)CH(2)O] linkages has been synthesized. In this cyclophane, the TTF unit can adopt either cis or trans configurations. In addition, the 1, 5-dioxynaphthalene ring system imposes one element of planar chirality on this cyclophane. A second element of planar chirality is introduced by the trans form of the TTF unit. Thus, the cyclophane exists in diastereoisomeric forms as three pairs of enantiomers. The enantiomeric pairs associated with the cis form of the TTF unit, as well as one of those associated with the trans form, have been isolated by crystallization, and their structures assigned in the solid state by single-crystal X-ray analyses. In solution, cis/trans isomerization occurs when either the cis or the trans form of the cyclophane is exposed to light. The photoisomerization reaction can be followed by (1)H NMR and UV-vis spectroscopies, as well as by HPLC. The photoisomerization quantum yield has been measured at two different excitation wavelengths (406 and 313 nm). In both cases, the trans --> cis process (Phi = 0.20 at 406 nm) is much more efficient than the reverse cis --> trans process (Phi = 0.030 at 406 nm). Since the absorption spectra of the trans and cis isomers are different and the quantum yield of the trans --> cis photoisomerization reaction depends on the excitation wavelength, the mole fraction of the two diastereoisomers present at the photostationary state depends on the wavelength of the exciting light. No isomerization occurs when the solutions, regardless of the mole fraction of the two diastereoisomers, are stored in the dark.  相似文献   

4.
Urocanic acid, imidazole propenoic acid, is a metabolic product of histidine, which accumulates in skin and is excreted in sweat. It absorbs UV radiation at wavelengths shorter than 340 nm, and its principal photochemical reaction is a trans-cis isomerization about the propenyl double bond. This isomerization to the biologically active cis isomer is implicated in the photoinduced suppression of the immune system of skin. The kinetics of the trans --> cis photoisomerization of urocanic acid has been determined in a number of solvents, spanning a range of polarities. The initial rates of isomerization and the photostationary trans-cis compositions, in all solvents except water, correlate linearly with solvent polarity. This indicates that the isomerization proceeds through a polar intermediate that is stabilized by coulombic interactions with the molecular environment.  相似文献   

5.
研究了新的含12个丁氧基偶氮苯介晶基元的五代树状碳硅烷液晶D1及偶氮苯介 晶基元化合物M5在氯仿、四氢呋喃、N,N-二甲基甲酰胺、乙醇和苯等溶剂中的量 子产率、反-顺光异构化、光回复异构、反/顺异构组分比、热回复异构及活化能 。D1和M5的光致变色速率常数为10~(-1)s~(-1),而含同一偶氮基元的光致变色液 晶聚硅氧烷的光致变色速率常数为10~(-8)s~(-1),因此,液晶树状物D1的光响应 速度比后者快10~7倍。  相似文献   

6.
Oxalyl amide derivatives bearing 4-dodecyloxy-stilbene as a cis-trans photoisomerizing unit were synthesized. The trans derivative acted as a versatile gelator of various organic solvents, whereas the corresponding cis derivative showed a poor gelation ability or none at all. In diluted solution (c = 2.0 x10(-5) mol dm(-3), ethanol), the cis isomer was photochemically converted into the trans isomer within 4 min. Depending on the radiation wavelength, the trans isomer was stable or liable to photodecomposition. When exposed to irradiation, a concentrated solution of the cis isomer (c = 2.0 x 10(-2) mol dm(-3), ethanol) turned into a gel. The FT-Raman, FT-IR, and 1H NMR spectra demonstrated that the gelation process occurred because of a rapid cis --> trans photoisomerization followed by a self-assembly of the trans molecules. Apart from the formation of hydrogen bonding between the oxalyl amide parts of the molecules, confirmed by FT-IR spectroscopy, it was assumed that the pi-pi stacking between the trans-stilbene units of the molecule and a lipophilic interaction between long alkyl chains were the interactions responsible for gelation.  相似文献   

7.
Several water-soluble cationic surfactants, 4-alkylazobenzene-4'-(oxy-2-hydroxypropyl)trimethylammonium methylsulfate (AZMS) (AZMS-0, AZMS-1, AZMS-2, AZMS-4, and AZMS-8), containing alkylglycidylether and azoarene have been synthesized with high yields of 63-78% and their surface-active properties have been investigated upon irradiation with UV/vis light. All of the trans-AZMS surfactants are isomerized to cis-trans mixtures containing 92.5% cis isomer by UV light irradiation at 350 nm. The cis isomers in the mixtures are reverted to trans isomers by visible light irradiation (lambda>445 nm). Such photoisomerization induces changes in the surface activity of each surfactant. The critical micelle concentration (cmc) of the trans form of AZMS-8 surfactant is about 1.28x10(-4) mol/l. At the photostationary state, 92.5% of the trans form is changed to the cis form which exhibits a slightly higher cmc (3.41x10(-4) mol/l). The new cmc of AZMS surfactants upon photoisomerization is similar to that of the ideal mixed micellar system. In particular, the ratio of cmc(cis) to cmc(trans) of AZMS derivatives is about 1.87-2.85 which increases proportionally with the chain length of alkyl group. The minimum average area per molecule (A(min)(a/w)) for the trans and cis isomers of AZMS-8 is 0.60 and 0.74 nm(2), respectively. The difference in the A(min)(a/w) may originate from the structural differences in the two isomers. These values are quite different as compared to those of the conventional azobenzene surfactants. Copyright 2000 Academic Press.  相似文献   

8.
The photoinduced isomerization of molecules incorporated in a glassy polymer matrix exhibits a wide spectrum of quantum yields. The source of the spectrum is matrix heterogeneities. The kinetics of the photoisomerization of 1-naphthyl-p-azomethoxybenzene in poly(ethyl methacrylate) and poly(n-butyl methacrylate) films is first used to study the rearrangement of the environments of photochromic molecules. The nonequilibrium distribution of cis molecules over the spectrum is obtained via conversion of trans molecules with the highest quantum yield into the cis form with the use of 405-nm light. The kinetics of attainment of the photostationary ratio for concentrations of cis and trans isomers under the action of light with a wavelength of 546 nm is studied through variation in the pause between the conversion of molecules into the cis form and the beginning of the studied process. It is shown that reversible changes in the structure of polymer matrices occur at a high rate at temperatures much lower than the glasstransition temperature.  相似文献   

9.
The cis-trans photoisomerization of crystalline or powdered cis,cis-1,4-diphenyl-1,3-butadiene (cc-DPB) was studied at room temperature. The progress of the reaction was monitored by fluorescence spectroscopy, powder X-ray diffraction, 1H NMR and HPLC. High conversions (up to 90%) to the trans,trans isomer were observed in a crystal to crystal reaction. Formation of the cis,trans isomer, the sole product obtained in solution and in very viscous glassy media at 77 K is entirely suppressed in the solid state. The observed two-bond photoisomerization is explained by Warshel's bicycle-pedal photoisomerization mechanism (BP). The results are consistent with X-ray diffraction measurements, which have revealed that cc-DPB molecules exist in crystals in edge to face alternating arrays of two conformer structures whose phenyl rings deviate significantly from the plane of the central diene moiety ( approximately 40 degrees ). One of the conformers has the two phenyls in parallel planes and the other in roughly perpendicular planes. Least motion considerations suggest that the former should undergo the two-bond photoisomerization more easily, in agreement with observations that indicate that the reaction proceeds in discrete stages. Recently reported cis,cis- to trans,trans-muconate photoisomerizations in the solid state are proposed to also proceed via the BP mechanism. The reactions are consistent with the X-ray crystal structures of the cis,cis-muconate isomers.  相似文献   

10.
The surface properties of a nonionic photoresponsive surfactant that incorporates the light-sensitive azobenzene group into its tail have been investigated. Cis-trans photoisomerization of this azobenzene group alters the ability of the surfactant to pack into adsorbed monolayers at an air/water interface or into aggregates in solution, thereby causing a significant variation in surface and bulk properties following a change in the illumination conditions. NMR studies indicate that a solution left in the dark for an extended period of time contains the trans isomer almost exclusively, whereas samples exposed to light of fixed wavelength eventually reach a photostationary equilibrium in which significant amounts of both isomers are present. At concentrations well above the cmc but under different illumination conditions (dark, UV light, visible light), freshly formed surfaces exhibit profoundly different surface tension trajectories as they approach essentially identical equilibrium states. This common equilibrium state corresponds to a surface saturated with the trans (more surface active) isomer. The dark sample shows a simple, single-step relaxation in surface tension after the creation of a fresh interface, whereas the UV and visible samples exhibit a more rapid initial decrease in tension, followed by a plateau of nearly constant tension, and finally end with a second relaxation to equilibrium. It is hypothesized that this behavior of the UV and visible samples is caused by competitive adsorption between the cis and trans isomers present in these mixtures. The cis surfactant reaches the interface more quickly, leading to an initially cis-dominated interface having a tension value corresponding to the intermediate plateau, but is ultimately displaced by the trans isomer. Fluorescence studies are used for cmc determination in the samples, and the results suggest that the two isomers segregate into distinct aggregate phases. The critical concentration associated with the formation of cis-rich aggregates is much larger than that of the trans-rich aggregates, which accounts for the faster diffusion of the cis isomer to a fresh interface. Models of the diffusion and adsorption of surfactant are developed. These consider the role of aggregates in the adsorption process by examining the limiting behavior of three aggregate properties: dissolution rate, mobility, and ability to incorporate into the interface. These models are used to analyze the surface tension relaxation of dark and UV samples, and the predictions are found to be in agreement with the observed characteristic relaxation time scales for these samples, though the results are inconclusive regarding the specific role of aggregates. High-intensity illumination focused on a surface saturated with surfactant is used to drive photoisomerization of the adsorbed surfactant, and rapid, substantial changes in surface tension result. These changes are consistent with proposed conformations of the adsorbed surfactant and with monolayer studies performed with a Langmuir film balance.  相似文献   

11.
Abstract— Evidence is presented for the formation of a thymine hydrate upon ultraviolet (UV) or gamma irradiation of aqueous solutions. The UV quantum efficiency exhibits a dependence on pH similar to that shown for uracil hydration, but the yield is three orders of magnitude smaller than for uracil. Hydration is not affected by wavelength, oxygen, or concentration of thymine. The reversal rate of the photohydrate to thymine is similar to the reversal rates of both isomers of the thymine hydrate formed by γ radiolysis, and depends on pH in the same way as the rate for the uracil photohydrate. The photohydrate of thymine is chromatographically identical to the cis isomer of 6-hydroxy-5, 6-dihydrothymine.  相似文献   

12.
Most azobenzene-based photoswitches use UV light for photoisomerization. This can limit their application in biological systems, where UV light can trigger unwanted responses, including cellular apoptosis. We have found that substitution of all four ortho positions with methoxy groups in an amidoazobenzene derivative leads to a substantial (~35 nm) red shift of the n-π* band of the trans isomer, separating it from the cis n-π* transition. This red shift makes trans-to-cis photoswitching possible using green light (530-560 nm). The cis state is thermally stable with a half-life of ~2.4 days in the dark in aqueous solution. Reverse (cis-to-trans) photoswitching can be accomplished with blue light (460 nm), so bidirectional photoswitching between thermally stable isomers is possible without using UV light at all.  相似文献   

13.
Norikane Y  Tamaoki N 《Organic letters》2004,6(15):2595-2598
[reaction: see text] A new class of molecular machine exhibits a hingelike motion upon photoirradiation. The motion (close and open) can be operated by alternate irradiation with UV and visible light. The trans/trans and cis/cis isomers are thermally stable at 40 degrees C, and the photochemical closure reaction (from trans/trans to cis/cis isomer) is dependent on the intensity of the light used because of the short-lived intermediate (trans/cis isomer).  相似文献   

14.
The synthesis, characterization, and X-ray crystal structures of [Re(diimine)(CO)(3)(dpe)](PF(6)) (dpe = 1,2-di(4-pyridyl)ethylene) compounds are reported. The cis-dpe complexes exhibit yellow luminescence after UV excitation, whereas the trans-dpe counterparts are nonluminescent. The luminescence quantum yields of the cis-dpe complexes are strongly dependent on the identity of the diimine ligand. Irradiation (350 nm) of the trans-dpe complexes induces trans --> cis dpe-ligand isomerization with quantum yields on the order of 0.2, and this process leads to an on-switching of yellow luminescence. After long 350-nm irradiation times, a steady state composed of roughly 70% cis- and 30% trans-dpe complexes is reached. The reverse cis --> trans photoisomerization reaction is induced by irradiating the cis-dpe complexes at 250 nm, switching off the yellow luminescence. For 250-nm excitation, photodecomposition of the [Re(diimine)(CO)(3)(dpe)](+) complexes competes efficiently with photoisomerization.  相似文献   

15.
The reversible cis/trans photoisomerization of secondary thiopeptide bonds has been systematically studied with UV-visible absorption, capillary electrophoresis, 1H NMR spectroscopy, and circular dichroism methods. It was found that the concentration of the cis conformers could be increased from less than 1 % in the thermal equilibrated solution to up to 20 % in the photostationary state. The rotational barriers of the thiopeptide bond and the pH dependence of the isomerization rates were also studied. The quantum yields of the trans-->cis and the cis-->trans processes were determined from photokinetic analysis.  相似文献   

16.
Electronic absorption, and excitation spectra of 1-methyl-4-[4-aminostyryl] pyridinum iodide (M-NH2) were measured in solvents of different polarity. The (M-NH2) dye exhibits negative solvatochromism, i.e. a hypsochromic band shift as the solvent polarity increases. The fluorescence quantum yield is also sensitive to the polarity and viscosity of the medium. The ground and excited state protonation constants were calculated and amount to 3.35 and 0.62, respectively. The effect of micellization on the emission spectrum of (M-NH2) are also studied in sodium dodecyl sulphate (SDS). The fluorescence intensity increases as the concentration of SDS increases with an abrupt change at cmc. The quantum yield of the cis trans photoisomerization is also determined in aqueous buffer solution of pH 1.1.  相似文献   

17.
Abstract— All- trans - and 13- cis -14,15-dideuterioretinal were synthesized and their solution photochemistry examined. Quantum yields of trans → cis or cis → trans photoisomerization and the number and ratio of primary photoproducts, determined by high pressure liquid chromatographic analysis, are essentially identical to that of their corresponding retinal isomer. The C-14, C-15 carbon-hydrogen modes play no particularly important role in the deactivation of electronically excited linear polyenes related to retinal.  相似文献   

18.
[formula: see text] [1.1](3,3')-Azobenzenophane, in which two azobenzenes are cyclically connected by -CH2- chains at the meta positions, has been synthesized. The crystal structures of all isomers have been revealed. This is the first report on the crystal structure of the cis isomer of macrocyclic azobenzenes. The trans,trans isomer was slightly distorted, the trans,cis isomer highly deformed, and the cis,cis isomer unstrained. The thermal stability of cis isomers in solutions are deducible from the crystal structures.  相似文献   

19.
Abstract— Squid opsin which is capable of combining with 11- cis or 9- cis retinal to reconstitute photo-pigment has been prepared by irradiation of rhabdomal membranes with orange light (> 530 nm) in the presence of 0.2 M hydroxylamine. When the irradiation is carried out either at concentrations of hydroxylamine higher than 0.2 M or with light of wavelength shorter than 530 nm, rhodopsin in the membranes is bleached quickly, but the ability of the resultant opsin to form rhodopsin is greatly reduced.
The optimum pH for rhodopsin regeneration in rhabdomal membranes was found to be between 6.5 and 8.5. The rate of regeneration of rhodopsin increases with raising temperature, and at about 20°C it is almost the same as that of isorhodopsin. Even after solubilization in digitonin solution, opsin still preserves the ability to reform rhodopsin.
All- trans retinal can be incorporated into retinochrome-bearing membranes, in which it is isomerized into 11- cis isomer by the photoisomerase activity of retinochrome. Rhabdomal membranes retaining active opsin can take up 11- cis retinal from retinochrome membranes so as to synthesize rhodopsin.  相似文献   

20.
The quantum yield of a photochemical reaction is one of the most fundamental quantities in photochemistry, as it measures the efficiency of the transduction of light energy into chemical energy. Nature has evolved photoreceptors in which the reactivity of a chromophore is enhanced by its molecular environment to achieve high quantum yields. The retinal chromophore sterically constrained inside rhodopsin proteins represents an outstanding example of such a control. In a more general framework, mechanical forces acting on a molecular system can strongly modify its reactivity. Herein, we show that the exertion of tensile forces on a simplified retinal chromophore model provokes a substantial and regular increase in the trans ‐to‐cis photoisomerization quantum yield in a counterintuitive way, as these extension forces facilitate the formation of the more compressed cis photoisomer. A rationale for the mechanochemical effect on this photoisomerization mechanism is also proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号