首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Nanosize fibers were fabricated using an extra-cylindrical electrode connected with single and multiple nozzles of an electrospinning process to stabilize the initial spun jets. To predict stability of spun jets, an electric field concentration factor (EFCF), which could be defined as a degree of a convergence of jets to a spinning axis, was introduced. The proposed parameter EFCF is utilized for the comparison of the experimental results for single and multi-nozzles electrospinning process. To consider the mass productivity of the multi-nozzles electrospinning supported by an auxiliary electrode, the weight of nanofibers that were spun to a rectangular shape target plate during 40 min was measured. The result indicates that the modified electrospinning technique shows a possibility as a useful method for increasing the production rate of nanofiber manufacturing.  相似文献   

2.
A novel electrospinning method using airflow, namely high pressure air‐jet split electrospinning, was proposed to fabricate polymer nanofibers with ultrahigh production rate. 7 wt % polyacrylonitrile spinning solution with a 0.157 Pa s viscosity was divided into micron size droplets by the filter screen in the front of the nozzle, and then these droplets were divided and split through high pressure airflow, which were drafted into nanofibers directly in the electric field and airflow field. In this study, the electric field distributions with different positive electrodes were simulated and their effect on fiber formation was investigated. The results show that electric field distribution and its intensity depended on electrodes area, a broader electric field distribution with a stronger intensity would bring about a larger cone angle of spraying jet region, at the same time, the contrast in the spray region enhanced. When the whole nozzle was charged, thinner fibers with about 170 nm could be prepared and the fiber production was 75.6 g/h. Compared with the conventional needle electrospinning, the throughput of nanofibers could be improved by thousands of times based on this novel electrospinning method. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 993–1001  相似文献   

3.
Electrospinning is an efficient and direct method of fabricating nanofibers. Fibers are frequently unstable in the electrospinning process, and the uneven distribution of the electric field is an important factor leading to instability. Experimental and finite element simulation studies are conducted on the process of melt electrospinning in a parallel electric field. Two parallel metal disks are used to successfully generate a uniform electric field. Electric field intensity on the edges of the metal disk is always stronger than the field at the center of the disk or at the spinneret bottom. The diameters, distances, and relative areas of these disks significantly affect the distribution of the electric field. Thus, the parallel electric field effectively reduces jet buckling in melt electrospinning. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 946–952  相似文献   

4.
Electrostatic spinning or electrospinning is now a well‐known process for fabricating ultrafine fibers with diameters in the submicrometer down to nanometer range from materials of diverse origins. The polarity of the emitting electrode (i.e., the one that is in contact with the polymer solution or melt) can be either positive or negative. In the present contribution, the effects of emitting electrode polarity and some processing parameters (i.e., polyamide‐6 (PA‐6) concentration, molecular weight of PA‐6, electrostatic field strength, solution temperature, solvent type, and addition of an inorganic salt) on morphological appearance and average size of the as‐spun PA‐6 fibers were investigated. Scanning electron micrographs showed obvious morphological difference between the fibers obtained under positive and negative polarity of the emitting electrode. The main differences were that the cross section of the as‐spun PA‐6 fibers obtained under the negative electrode polarity was flat, while that of those obtained under the positive one appeared to be round and that the average size of the fibers obtained under the negative electrode polarity was larger than that of those obtained under the positive one. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3699–3712, 2005  相似文献   

5.
Nylon‐6,6 nanofibers were electrospun at an elongation rate of the order of 1000 s?1 and a cross‐sectional area reduction of the order of 0.33 × 105. The influence of these process peculiarities on the intrinsic structure and mechanical properties of the electrospun nanofibers is studied in the present work. Individual electrospun nanofibers with an average diameter of 550 nm were collected at take‐up velocities of 5 and 20 m/s and subsequently tested to assess their overall stress–strain characteristics; the testing included an evaluation of Young's modulus and the nanofibers' mechanical strength. The results for the as‐spun nanofibers were compared to the stress–strain characteristics of the melt‐extruded microfibers, which underwent postprocessing. For the nanofibers that were collected at 5 m/s the average elongation‐at‐break was 66%, the mechanical strength was 110 MPa, and Young's modulus was 453 MPa, for take‐up velocity of 20 m/s—61%, 150 and 950 MPa, respectively. The nanofibers displayed α‐crystalline phase (with triclinic cell structure). © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1482–1489, 2006  相似文献   

6.
A kind of biomimetic fibers of helical structures at nanoscale has attracted increasing interest. In this study, a novel co‐electrospinning setup with a designed flat spinneret, used for the fabrication of helical nanofibers, is reported in this study. Poly(m‐phenylene isophthalamide) (Nomex) and Thermoplastic polyurethane (TPU) are chosen as the two components in co‐electrospinning. To display the efficiency for producing helical fibers, a generally used core–shell needle spinneret is used for comparison. The effect of the uniformity of electric field distribution created by these two types of spinnerets on the jet motion and the resultant helical fibers is developed, with systematical simulation and experimental research. The results showed that the co‐electrospinning system with the newly designed flat spinneret can produce helical nanofibers efficiently. Compared with the needle spinneret, the flat spinneret created more uniform electric field, leading to better morphology and structure of the resultant helical fibers. In addition, an approach to achieve the scale‐up of this co‐electrospinning system is developed. This novel design is expected to provide a promising method to fabricate nanofiber materials with helical structures. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 1496–1505  相似文献   

7.
To improve the hydrophilic properties of poly(ε‐caprolactone) (PCL) nano/microfiber webs for tissue engineering scaffolds, PCL webs of various structures were fabricated by electrospinning with single or double nozzles connected to an auxiliary electrode. Surface‐modified and layered PCL fiber webs were made by including water‐soluble poly(ethylene oxide) (PEO) in the PCL electrospinning solution (single‐nozzle method) or by electrospinning of alternating PCL and PEO solutions using two nozzles (double‐nozzle method), respectively. When the PEO component within the resulting webs was removed by dissolution with distilled water, the remnant PCL webs exhibited two distinct structures. Those made by the single‐nozzle method consisted of nanofibers with high surface roughness, whereas those made by the double‐nozzle method consisted of stacked layers of PCL nanofibers. Both types of structured PCL web showed improved hydrophilicity characteristics compared with those of nanofiber webs generated from a pure PCL solution using a typical electrospinning process. Cell culturing and scanning electron microscopy showed that the interactions between human dermal fibroblasts and the structured PCL scaffolds were very favorable. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2038–2045, 2007  相似文献   

8.
9.
Unlike conventional electrospun polymer fibers deposited on a target electrode as a randomly oriented mesh, poly(p‐xylenetetrahydrothiophenium chloride) was electrospun into centimeters‐long yarns vertically on the surface of the electrode but parallel to the electric field. The diameter of the yarn was strongly affected by the concentration, spinning rate, and viscosity of the polymer solution, but less dependent on the applied voltage. The subsequent carbonization of thus‐electrospun yarns at 600–1000 °C resulted in uniaxially aligned carbon nanofibers with average diameters of 127–184 nm. On the basis of Raman spectra, the graphitic crystallite size and the molar fraction of graphite were estimated to be 1.2–1.4 and 0.21–0.24 nm, respectively. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 305–310, 2008  相似文献   

10.
Continuous polymer nanofibers are available through electrospinning, but most have the same structure in their cross section. This article focuses on the fabrication and the structural and mechanical characterization of pencil‐like double‐layered composite nanofibers coaxially electrospun from solutions of two different biodegradable materials, i.e., gelatin and poly(ε‐caprolactone) (PCL). Transmission electron microscopy and water contact angle measurements confirmed that a gelatin inner fiber was wrapped with a PCL outer layer. Possible applications of such nanofibers include a controlled degradation rate when used as a medical device in human body. It has been found that the tensile performance of the composite nanofibers was better than those of both the pure constituent, i.e. gelatin and PCL, nanofibers alone. The ultimate strength and ultimate strain of the composite nanofibers with 7.5% w/v gelatin in the core and 10% w/v PCL as shell were at least 68% and 244% higher, respectively, than those of the same concentration pure gelatin and PCL nanofibers. Thus, a coaxial electrospinning technique as used in this article can be applicable, not only in developing functionalized nanofibers but also in elevating their mechanical property. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2852–2861, 2005  相似文献   

11.
The focus of this work is the preparation of aramid nanofibers via electrospinning technology and the study of their adsorption properties. In this article, aramid nanofibers were prepared by electrospinning aramid fibers solution with the addition of lithium chloride (LiCl). It showed a good adsorption capacity when methylene blue (MB) was used as the model target. There were much larger adsorption amounts and faster kinetics of uptaking target species of electrospun aramid nanofibers to MB than that of electrospun polyethersulfone (PES) nanofibers. Compared with activated carbon, aramid nanofibers also have a much faster adsorption rate to MB. Aramid nanofibers were subsequently used to effectively remove endocrine disruptors such as bisphenol A (BPA), phenol (Phe), and p‐hydroquinone (BPhe) from their aqueous solutions. Additionally, molecule imprinted technology enhances aramid nanofibers with much higher adsorption amounts and special adsorption property for endocrine disruptors. These results showed that aramid nanofibers have the potential to be used in environmental applications. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

12.
Although there have been many reports on the preparation and applications of various polymer nanofibers with the electrospinning technique, the understanding of synthetic parameters in electrospinning remains limited. In this article, we investigate experimentally the influence of solvents on the morphology of the poly(vinyl pyrrolidone) (PVP) micro/nanofibers prepared by electrospinning PVP solution in different solvents, including ethanol, dichloromethane (MC) and N,N‐dimethylformamide (DMF). Using 4 wt % PVP solutions, the PVP fibers prepared from MC and DMF solvents had a shape like a bead‐on‐a‐string. In contrast, smooth PVP nanofibers were obtained with ethanol as a solvent although the size distribution of the fibers was somewhat broadened. In an effort to prepare PVP nanofibers with small diameters and narrow size distributions, we developed a strategy of using mixed solvents. The experimental results showed that when the ratio of DMF to ethanol was 50:50 (w/w), regular cylindrical PVP nanofibers with a diameter of 20 nm were successfully prepared. The formation of these thinnest nanofibers could be attributed to the combined effects of ethanol and DMF solvents that optimize the solution viscosity and charge density of the polymer jet. In addition, an interesting helical‐shaped fiber was obtained from 20 wt % PVP solution in a 50:50 (w/w) mixed ethanol/DMF solvent. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3721–3726, 2004  相似文献   

13.
Electrospinning is a powerful technique to produce nanofibers of tunable diameter and morphology for medicine and biotechnological applications. By doping electrospun nanofibers with inorganic and organic compounds, new functionalities can be provided for technological applications. Herein, we report a study on the morphology and optical properties of electrospun nanofibers based on the conjugated polymer poly[2‐methoxy‐5‐(2‐ethylhexyloxy)‐1,4‐phenylenevinylene] (MEH‐PPV) and poly(methylmethacrylate) (PMMA). Initially, we investigate the influence of the solvent, surfactant, and the polymer concentration on electrospinning of PMMA. After determining the best conditions, 0.1% MEH‐PPV was added to obtain fluorescent nanofibers. The optical characterizations display the successful impregnation of MEH‐PPV into the PMMA fibers without phase separation and the preservation of fluorescent property after fiber electrospinning. The obtained results show the ability of the electrospinning approach to obtain fluorescent PMMA/MEH‐PPV nanofibers with potential for optical devices applications. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1388–1394  相似文献   

14.
Electrospinning gives rise to polymer nanofibers. The spinning process is characterized by strong deformations of the polymer material taking place during the spinning process and a very rapid structure formation process happening within milliseconds. We were interested in the influence of the peculiar spinning process on the structures of nanofibers. For this purpose, we analyzed the internal structures of nanofibers spun from polyamide‐6 and polylactide with an average diameter of about 50 nm. The fibers were partially crystalline, with degrees of crystallinity not significantly smaller than those found for less rapidly quenched and much thicker melt‐extruded fibers. The annealing of polyamide fibers at elevated temperatures resulted in a transformation from the disordered γ modification to the more highly ordered α modification, and this again was in close agreement with the response of melt‐extruded fibers. The orientation of the crystals along the fiber axis was strongly inhomogeneous: it was, on average, very weak, yet it could be quite pronounced locally. Small elongations of approximately 10% resulted in well‐developed homogeneous crystal orientations. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 545–553, 2003  相似文献   

15.
High strain rate extensional flow of a semidilute polymer solution can result in fragmentation caused by polymer entanglement loss, evidenced by appearance of short nanofibers during electrospinning. The typically desired outcome of electrospinning is long continuous fibers or beads, but, under certain material and process conditions, short nanofibers can be obtained, a morphology that has scarcely been studied. Here we study the conditions that lead to the creation of short nanofibers, and find a distinct parametric space in which they are likely to appear, requiring a combination of low entanglement of the polymer chains and high strain rate of the electrospinning jet. Measurements of the length and diameter of short nanofibers, electrospun from PMMA dissolved in a blend of CHCl3 and DMF, confirm the theoretical prediction that the fragmentation of the jet into short fibers is brought about by elastic stretching and loss of entanglement of the polymer network. The ability to tune nanofiber length, diameter and nanostructure, by modifying variables such as the molar mass, concentration, solvent quality, electric field intensity, and flow rate, can be exploited for improving their mechanical and thermodynamic properties, leading to novel applications in engineering and life sciences. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013 , 51, 1377–1391  相似文献   

16.
Scalable, bottom‐up chemical synthesis and electrospinning of novel Clsubstituted poly(para‐phenylene terephthalamide) (PPTA) nanofibers are herein reported. To achieve Cl‐PPTA nanofibers, the chemical reaction between the monomers was precisely controlled, and dissolution of the polymer into solvent was tailored to enable anisotropic solution formation and sufficient entanglement molecular weight. Electrospinning processing parameters were studied to understand their effects on fiber formation and mat morphology and then optimized to yield consistently high quality fibers. Importantly, the control of relative humidity during the fiber formation process was found to be critical, likely because water promotes hydrogen bond formation between the PPTA chains. The fiber and mat morphologies resulting from different combinations of chemistry and spinning conditions were observed using scanning electron microscopy, and observations were used as inputs to the optimization process. Tensile properties of single Cl‐PPTA nanofibers were characterized for the first time using a nanomanipulator mounted inside a scanning electron microscope (SEM), and fiber moduli measuring up to 70 GPa, and strengths exceeding 1 GPa were achieved. Given the excellent mechanical properties measured for the nanofibers, this chemical synthesis procedure and electrospinning protocol appear to be a promising route for producing a new class of nanofibers with ultrahigh strength and stiffness. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 563–573  相似文献   

17.
The present work demonstrates the use of mesoporous nanofibers for the enhanced analytical performance of electrochemical biosensor. By exploiting the phase separation property of the block copolymers, a simple three‐step process was used to generate the porosity in the nanofibers. Here we present the effect of the porosity on the sensing ability of the electrospun PS‐b‐PMMA nanofibers. The functional groups present on the nanofiber surface were characterized using DPV. The nanofibers modified electrode showed a large decrease in the oxidation current with the increase in the pH from 4.2 to 6.8 for the anionic redox couple whereas the change in the current is negligible for a neutral redox couple, this suggested the presence of ‐COOH groups. A one‐step process was used for the immobilization of biotin. There were about 35.5 % and 66.6 % decrease in the redox current for the as‐spun and porous nanofibers after functionalization respectively which indicate the presence of a high amount of active sites in the porous nanofibers. Finally, the sensor response was studied using streptavidin (1μg/ml–1fg/ml) as a model analyte. CV studies showed a 2.7‐fold increase whereas DPV showed a 6‐fold increase in the sensitivity for the porous nanofibers as compared to the as‐spun nanofibers.  相似文献   

18.
The electrospinnability of polyethylene oxide (PEO) was manipulated by atmospheric plasma treatment of pre‐electrospinning solutions. Conductivity, viscosity, and surface tension of PEO solutions increased after plasma treatment, and the plasma effect remained longer when the solution concentrate increased. Both untreated and treated solutions were then electrospun, and the morphology of the resultant nanofibers was observed by SEM. Atmospheric plasma treatment improved the electrospinnability of PEO solutions and led to less beads and finer diameter distribution in the resultant nanofibers. Additionally, plasma treatment of the pre‐electrospinning solutions affected the crystal structure of resultant nanofibers. These results suggest that atmospheric plasma treatment is a feasible approach to improve the electrospinnability of polymer solutions and can used to control the structure of electrospun nanofibers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

19.
The electrospinning method has been employed to fabricate ultrafine nanofibers of ultrahigh‐molecular‐weight polyethylene for the first time with a mixture of solvents of different dielectric constants and conductivities. The possibility of producing highly oriented nanofibers from ultrahigh‐molecular‐weight polymers suggests new ways of fabricating ultrastrong, porous, and single‐component nanocomposite fibers with improved properties. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 766–773, 2007  相似文献   

20.
Core–shell structured PEO‐chitosan nanofibers have been produced from electric field inducing phase separation. Chitosan, a positive charged polymer, was dissolved in 50 wt % aqueous acetic acid and the amino group on polycation would protonize, which would endow chitosan electrical properties. Chitosan molecules would move along the direction of the electric field under the electrostatic force and formed the shell layer of nanofibers. Preparation process of core – shell structure is quite simple and efficient without any post‐treatment. The core–shell structure and existence of chitosan on the shell layer were confirmed before and after post‐treatment by TEM and further supported by SEM, FTIR, XRD, DSC, and XPS studies. Blending ratio of PEO and chitosan, molecular weight of chitosan for the mobility of chitosan are thought to be the key influence factors on formation of core–shell structure. Drug release studies show that the prepared core–shell structure nanofibers has a potential application in the biomedical fields involving drug delivery. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2298–2311  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号