首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One of most interesting systems of coordination polymers constructed from the first‐row transition metals is the porous ZnII coordination polymer system, but the numbers of such polymers containing N‐donor linkers are still limited. The title double‐chain‐like ZnII coordination polymer, [Ag2Zn(CN)4(C10H10N2)2]n, presents a one‐dimensional linear coordination polymer structure in which ZnII ions are linked by bridging anionic dicyanidoargentate(I) units along the crystallographic b axis and each ZnII ion is additionally coordinated by a terminal dicyanidoargentate(I) unit and two terminal 1‐benzyl‐1H‐imidazole (BZI) ligands, giving a five‐coordinated ZnII ion. Interestingly, there are strong intermolecular AgI…AgI interactions between terminal and bridging dicyanidoargentate(I) units and C—H…π interactions between the phenyl rings of BZI ligands of adjacent one‐dimensional linear chains, providing a one‐dimensional linear double‐chain‐like structure. The supramolecular three‐dimensional framework is stabilized by C—H…π interactions between the phenyl rings of BZI ligands and by AgI…AgI interactions between adjacent double chains. The photoluminescence properties have been studied.  相似文献   

2.
A series of random copolymers of N‐isopropylacrylamide (NIPAM) and sodium 2‐acrylamido‐2‐methyl‐1‐propanesulphonate (AMPS) was synthesized by free‐radical copolymerization. The content of AMPS in the copolymers ranged from 1.1 to 9.6 mol %. The lower critical‐solution temperature (LCST) of copolymers in water increased strongly with an increasing content of AMPS. The influence of polymer concentration on the LCST of the copolymers was studied. For the copolymers with a higher AMPS content, the LCST decreased faster with an increasing concentration than for copolymers with a low content of AMPS. For a copolymer containing 1.1 mol % of AMPS the LCST dropped by about 3 °C when the concentration increased from 1 to 10 g/L, whereas for a copolymer containing 9.6 mol % of AMPS the LCST dropped by about 10 °C in the concentration range from 2 to 10 g/L. It was observed that the ionic strength of the aqueous polymer solution very strongly influences the LCST. This effect was most visible for the copolymer with the highest content of AMPS (9.6 mol %) for which an increase in the ionic strength from 0.2 to 2.0 resulted in a decrease in the LCST by about 27 °C (from 55 to 28 °C), whereas for the copolymer containing 1.1 mol % of AMPS the LCST decreased only by about 6 °C (from 37 to 31 °C) when the ionic strength increased from 0.005 to 0.3. The reactivity ratios for the AMPS and NIPAM monomer pairs were determined using different methods. The values of rAMPS and rNIPAM obtained were 11.0–11.6 and 2.1–2.4, respectively. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2784–2792, 2001  相似文献   

3.
The title complex, [Ag(C7H5O2)(C4H5N3)]n, is a polymer based on a mononuclear silver(I)‐centered fragment. The AgI atom is trigonally coordinated by two N atoms from two 2‐­amino­pyrimidine ligands and one O atom from one benzoate anion, giving zigzag polymeric chains with an [–Ag—N—C—N–]n backbone running along the a axis. It is proposed that intermolecular hydrogen bonding drives the formation of the chain polymer.  相似文献   

4.
Amphiphilic polymers consisting of a statistical distribution of octadecyl methacrylate (ODMA) and acrylic acid in respective molar ratios of 83-22 and 17-78 mol% and in a molecular-weight range of 2.35-4.70᎒4 gmol-1 have been synthesized. The series of polymers consisting of various mole fractions of ODMA and acrylic acid are expected to exhibit unique characteristics resembling ionomer to hydrophobically modified polyelectrolytes. The changes in the I3/I1 emission intensity ratios of pyrene, occurring in the presence of tetrahydrofuran (THF) solutions of the polymers have been taken as the main basis for inferring solution structures. The polymers are found to form random-coil to collapsed-coil/aggregated structures in THF solvent depending on the copolymer compositions. The polymer consisting of 83 mol% ODMA and 17 mol% acrylic acid behaves as an ionomer, capable of forming collapsed-coil structures at concentrations of 0.02 gml-1 and above as shown by a very high I3/I1 of 1.20 (I3/I1 of pyrene in THF is 0.85). In contrast, the poly(octadecyl methacrylate) homopolymer and the sets of copolymers consisting of a very high proportion of acrylic acid to an extent of 73 mol% and above contribute to almost negligible or very small changes in I3/I1 similar to the homopolymer, poly(octadecyl methacrylate), suggesting the formation of random-coil structures.  相似文献   

5.
A new series of copolymers with high brightness and luminance efficiency were synthesized using the Gilch polymerization method, and their electro‐optical properties were investigated. The weight‐average molecular weights (Mw) and polydispersities of the synthesized poly(9,9‐dioctylfluorenyl‐2,7‐vinylene) [poly(FV)], poly[2‐(3‐dimethyldodecylsilylphenyl)‐1,4‐phenylenevinylene] [poly(m‐SiPhPV)], and poly[9,9‐di‐n‐octylfluorenyl‐2,7‐vinylene]‐co‐(2‐(3‐dimethyldodecylsilylphenyl)‐1,4‐phenylene vinylene)] [poly(FV‐com‐SiPhPV)] were found to be in the ranges of (8.7–32.6) × 104 and 2.3–5.4, respectively. It was found that the electro‐optical properties of the copolymers could be adjusted by controlling the feed ratios of the comonomers. Thin films of poly(FV), poly(m‐SiPhPV), and poly(FV‐com‐SiPhPV) were found to exhibit photoluminescence quantum yields between 21% and 42%, which are higher than those of MEH‐PPV. Light‐emitting diodes were fabricated in ITO/PEDOT/light‐emitting polymer/cathode configurations using either double layer (LiF/Al) or triple layer (Alq3/LiF/Al) cathode structures. The performance of the polymer light‐emitting diodes (PLEDs) with triple layer cathodes was found to be better than that of the PLEDs with double layer cathodes in poly(FV) and poly(FV‐com‐SiPhPV). The turn‐on voltages of the PLEDs were in the range of 4.5–6.0 V, with maximum brightness and luminance efficiency up to 9691 cd/m2 at 16 V and 3.27 cd/A at 13 V, respectively. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5062–5071, 2005  相似文献   

6.
In the organometallic silver(I) supramolecular complex poly[[silver(I)‐μ3‐3‐[4‐(2‐thienyl)‐2H‐cyclopenta[d]pyridazin‐1‐yl]benzonitrile] perchlorate methanol solvate], {[Ag(C18H11N3S)](ClO4)·CH3OH}n, there is only one type of AgI center, which lies in an {AgN2Sπ} coordination environment. Two unsymmetric multidentate 3‐[4‐(2‐thienyl)‐2H‐cyclopenta[d]pyridazin‐1‐yl]benzonitrile (L) ligands link two AgI atoms through π–AgI interactions into an organometallic box‐like unit, from which two 3‐cyanobenzoyl arms stretch out in opposite directions and bind two AgI atoms from neighboring box‐like building blocks. This results in a novel two‐dimensional network extending in the crystallographic bc plane. These two‐dimensional sheets stack together along the crystallographic a axis to generate parallelogram‐like channels. The methanol solvent molecules and the perchlorate counter‐ions are located in the channels, where they are fixed by intermolecular hydrogen‐bonding interactions. This architecture may provide opportunities for host–guest chemistry, such as guest molecule loss and absorption or ion exchange. The new fulvene‐type multidentate ligand L is a good candidate for the preparation of Cp–AgI‐containing (Cp is cyclopentadienyl) organometallic coordination polymers or supramolecular complexes.  相似文献   

7.
The reactions of 3,3′‐diaminobenzidine with 1,12‐dodecanediol in 1 : 1–1:3 molar ratios in the presence of RuCl2(PPh3)3 catalyst give poly(alkylenebenzimidazole), [ (CH2)11 O (CH2)11 Im / (CH2)10 Im ]n (Im: 5,5′‐dibenzimidazole‐2,2′‐diyl) (Ia‐Id) in 71–92% yields. The relative ratio between the [(CH2)11 O (CH2)11 Im ] unit (A) and the [‐ (CH2)10 Im ] unit (B) in the polymer chain varies depending on the ratio of the substrates used. The polymer Ia obtained from the 1 : 3 reaction contains these structural units in a 98 : 2 ratio. The polymers are soluble in polar solvents such as DMF (N,N‐dimethylformamide), DMSO (dimethyl sulfoxide), and NMP (N‐methyl‐2‐pyrrolidone) and have molecular weights Mn (Mw) of 4,200–4,800 (4,800–6,500) by GPC (polystyrene standard). The polymerization of the diol and 3,3′‐diaminobenzidine in higher molar ratios leads to partial cross‐linking of the resulting polymers Ie and If via condensation of imidazole NH group with CH2OH group. Similar reactions of 3,3′‐diaminobenzidine with α,ω‐diols, HO(CH2)mOH (m = 4–10), in a 1 : 3 molar ratio give the polymers containing [ (CH2)m−1 O (CH2) m−1 Im ] and [ (CH2) m−2 Im ] units with partial cross‐linked structures. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1383–1392, 1999  相似文献   

8.
In the title coordination polymer, [Ag2(C4H4O4S)], each AgI cation is four‐coordinated by three of the four carboxylate O atoms and the S atom from symmetry‐related sulfanediyldiacetate ligands, thus defining a distorted tetrahedral geometry at the metal centre. The AgI cations are bridged by sulfanediyldiacetate groups, leading to a two‐dimensional layer structure. These layers are interconnected via Ag—S bonds to form a three‐dimensional coordination polymer network overall.  相似文献   

9.
The competitive removal of Pb2+, Cu2+, and Cd2+ ions from aqueous solutions by the copolymer of 2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid (AMPS) and itaconic acid (IA), P(AMPS‐co‐IA), was investigated. Homopolymer of AMPS (PAMPS) was also used to remove these ions from their aqueous solution. In the preparation of AMPS–IA copolymer, the molar percentages of AMPS and IA were 80 and 20, respectively. In order to observe the changes in the structures of polymers due to metal adsorption, FTIR spectra by attenuated total reflectancetechnique and scanning electron microscopy (SEM) pictures of the polymers were taken both before and after adsorption experiments. Total metal ion removal capacities of PAMPS and P(AMPS‐co‐IA) were 1.685 and 1.722 mmol Me2+/gpolymer, respectively. Experimental data were evaluated to determine the kinetic characteristics of the adsorption process. Competitive adsorption of Pb2+, Cu2+, and Cd2+ ions onto both PAMPS and P(AMPS‐co‐IA) was found to fit pseudo‐second‐order type kinetics. In addition, the removal orders in the competitive adsorption of these metal ions onto PAMPS and P(AMPS‐co‐IA) were found to be Cd2+ > Pb2+ > Cu2+ and Pb2+ > Cd2+ > Cu2+, respectively. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
The interaction between poly(acrylic acid) polymers (PAA) of low‐ (2000 g/mol) and high‐ (450,000 g/mol) molecular weight (Mw) hydrophobically modified with pyrene (PAAMePy) and β‐ and γ‐cyclodextrins (β‐CD, γ‐CD) was investigated with fluorescent techniques. The interaction with β‐CD promotes little variation in the spectral and photophysical behavior of the polymer, whereas significant changes are observed upon addition of γ‐CD. The degree of inclusion (between the pyrene groups of the polymer and the cyclodextrins) is followed through the observation of the changes in the absorption, excitation (collected in the monomer and excimer emission regions) and emission (IE/IM ratio) spectra and from time‐resolved data. Within the studied range of γ‐CD concentration, the fluorescence decays of the long chain (high Mw) PAAMePy polymers were found tri‐exponential in the monomer and excimer emission regions in agreement with previous studies. In the case of the low Mw PAAMePy polymers, tri‐exponential decays were observed at the monomer and excimer emission wavelengths. However, when a γ‐CD concentration of 0.01 and 0.03 M is reached for, respectively, the low‐ and high‐labeled pyrene short chain (low Mw) polymers, the fluorescence decays in the excimer region become biexponential (two excimers) with no rising component, thus showing that all pyrene groups are encapsulated (and preassociated) into the γ‐CD cavity. In the case of the high Mw polymers, the addition of γ‐CD has been found to change the level of polymer interaction from pure intramolecular (water in the absence of cyclodextrin) to a coexistence of intra‐ with intermolecular interactions. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1402–1415, 2008  相似文献   

11.
Linear and star‐like amphiphilic diblock copolymers were synthesized by the ring‐opening polymerization of ε‐caprolactone and γ‐2‐[2‐(2‐methoxyethoxy)ethoxy]ethoxy‐ε‐caprolactone monomers using zinc undecylenate as a catalyst. These polymers have potential applications as micellar drug delivery vehicles, therefore the properties of the linear and 4‐arm star‐like structures were examined in terms of their molecular weight, viscosity, thermodynamic stability, size, morphology, and drug loading capacity. Both the star‐like and linear block copolymers showed good thermodynamic stability and degradability. However, the star‐like polymers were shown to have increased stability at lower concentrations with a critical micelle concentration (CMC) of 5.62 × 10?4 g L?1, which is less than half the concentration of linear polymer needed to form micelles. The star‐like polymeric micelles showed smaller sizes when compared with their linear counterparts and a higher drug loading capacity of doxorubicin, making them better suited for drug delivery purposes. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3601–3608  相似文献   

12.
Novel naphtho[1,2‐b:5,6‐b′]dithiophene (NDT) and diketopyrrolopyrrole (DPP)‐containing donor‐acceptor conjugated polymers (PNDTDPPs) with different branched side chains were synthesized via Pd(0)‐catalyzed Stille coupling reaction. Octyldodecyl (OD) and dodecylhexadecyl (DH) groups were tethered to the DPP units as the side chains. The soluble fraction of PNDTDPP‐OD polymer in chloroform has much lower molecular weight than that of PNDTDPP‐DH polymer. PNDTDPP‐DH polymer bearing relatively longer DH side chains exhibited much better charge‐transport behavior than PNDTDPP‐OD polymer with shorter OD side chains. The thermally annealed PNDTDPP‐DH polymer thin films exhibited an outstanding charge carrier mobility of ~1.32 cm2 V?1 s?1 (Ion/Ioff ~ 108) measured under ambient conditions, which is almost six times higher than that of thermally annealed PNDTDPP‐OD polymer thin films. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5280–5290  相似文献   

13.
For the purpose of developing poly(3‐hexylthiophene) (P3HT) based copolymers with deep‐lying highest occupied molecular orbital (HOMO) levels for polymer solar cells with high open‐circuit voltage (Voc), we report a combined approach of random incorporation of 3‐cyanothiophene (CNT) and 3‐(2‐ethylhexyl)thiophene (EHT) units into the P3HT backbone. This strategy is designed to overcome CNT content limitations in recently reported P3HT‐CNT copolymers, where incorporation of more than 15% of CNT into the polymer backbone leads to impaired polymer solubility and raises the HOMO level. This new approach allows incorporation of a larger CNT content, reaching even lower‐lying HOMO levels. Importantly, a very low HOMO level of ?5.78 eV was obtained, representing one of the lowest HOMO values for exclusively thiophene‐based polymers. Lower HOMO levels result in higher Voc and higher power conversion efficiencies (PCE) compared to the previously reported P3HT‐CNT copolymers containing only 3‐hexylthiophene and CNT units. As a result, solar cells based on P3HT‐CNT‐EHT(15:15) , which contains 70% of P3HT, 15% of CNT and 15% of EHT, yield a Voc of 0.83 V in blends with PC61BM while preserving high fill factor (FF) and high short‐circuit current density (Jsc), resulting in 3.6% PCE. Additionally, we explored the effect of polymer number‐average molecular weight (Mn) on the optoelectronic properties and solar cell performance for the example of P3HT‐CNT‐EHT(15:15). The organic photovoltaic (OPV) performance improves with polymer Mn increasing from 3.4 to 6.7 to 9.6 kDa and then it declines as Mn further increases to 9.9 and to 16.2 kDa. The molecular weight study highlights the importance of not only the solar cell optimization, but also the significance of individual polymer properties optimization, in order to fully explore the potential of any given polymer in OPVs. The broader ramification of this study lies in potential application of these high band gap copolymers with low‐lying HOMO level in the development of ternary blend photovoltaics as well as tandem OPV. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1526–1536  相似文献   

14.
A series of novel copolymers of trans‐4‐hydroxy‐L ‐proline (Hpr) and α‐ hydroxy acids [D,L ‐mandelic acid (DLMA) and D,L ‐lactic acid (DLLA)] were synthesized via direct melt copolymerization with stannous octoate as a catalyst. These new copolymers had pendant amine functional groups along the polymer backbone chain. The optimal reaction conditions for the synthesis of the copolymers were obtained with 4 wt % stannous octoate at 140 °C under vacuum for 16 h. The synthesized copolymers were characterized by IR spectrophotometry, proton nuclear magnetic resonance, differential scanning calorimetry, and Ubbelohde viscometry. The effects of the kinds of comonomers and the comonomer molar ratio on the polycondensation and glass‐transition temperature (Tg) were investigated. The Tg's of the copolymers shifted to lower temperatures with an increasing comonomer molar ratio. As expected, the Tg's of the NZ‐Hpr/DLMA copolymers were higher than the NZ‐Hpr/DLLA copolymers, the pendant groups on the monomers (NZ‐Hpr) became larger and more flexible, and the Tg's of the resulting polymers declined. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 724–731, 2001  相似文献   

15.
New ether dimer (ED‐Od) and diester (ODE) derivatives of α‐hydroxymethylacrylate, each having two octadecyl side chains, were synthesized and (co)polymerized to evaluate the effects of differences in the structures of the monomers on final (co)polymer properties, particularly glass transition temperature. The free radical polymerizations of both monomers yielded high‐molecular weight polymers. Cyclopolymer formation of ED‐Od was confirmed by 13C NMR analysis and the cyclization efficiency (0.95 or greater) was found to be as high as the cyclization efficiencies of the cyclopolymerizations of ether dimers of various alkyl α‐hydroxymethylacrylates synthesized previously. Copolymers of both ED‐Od and ODE with methyl methacrylate (MMA) showed significant Tg decreases over PMMA due to octadecyl side groups causing “internal” plasticization. Comparison of the Tg's of the copolymers of octadecyl methacrylate, ED‐Od and ODE with MMA revealed that the impacts of these monomers on depression of Tg's are identical. That is, the magnitude of decrease in Tg's was quantitatively related to the number of the octadecyl side groups in the copolymers rather than their placement on the same or randomly incorporated repeat units. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7785–7793, 2008  相似文献   

16.
Coordination polymers are a thriving class of functional solid‐state materials and there have been noticeable efforts and progress toward designing periodic functional structures with desired geometrical attributes and chemical properties for targeted applications. Self‐assembly of metal ions and organic ligands is one of the most efficient and widely utilized methods for the construction of CPs under hydro(solvo)thermal conditions. 2‐(Pyridin‐3‐yl)‐1H‐imidazole‐4,5‐dicarboxylate (HPIDC2−) has been proven to be an excellent multidentate ligand due to its multiple deprotonation and coordination modes. Crystals of poly[aquabis[μ3‐5‐carboxy‐2‐(pyridin‐3‐yl)‐1H‐imidazole‐4‐carboxylato‐κ5N1,O5:N3,O4:N2]copper(II)dicopper(I)], [CuIICuI2(C10H5N3O4)2(H2O)]n, (I), were obtained from 2‐(pyridin‐3‐yl)‐1H‐imidazole‐4,5‐dicarboxylic acid (H3PIDC) and copper(II) chloride under hydrothermal conditions. The asymmetric unit consists of one independent CuII ion, two CuI ions, two HPIDC2− ligands and one coordinated water molecule. The CuII centre displays a square‐pyramidal geometry (CuN2O3), with two N,O‐chelating HPIDC2− ligands occupying the basal plane in a trans geometry and one O atom from a coordinated water molecule in the axial position. The CuI atoms adopt three‐coordinated Y‐shaped coordinations. In each [CuN2O] unit, deprotonated HPIDC2− acts as an N,O‐chelating ligand, and a symmetry‐equivalent HPIDC2− ligand acts as an N‐atom donor via the pyridine group. The HPIDC2− ligands in the polymer serve as T‐shaped 3‐connectors and adopt a μ3‐κ2N,O2N′,O′:κN′′‐coordination mode, linking one CuII and two CuI cations. The Cu cations are arranged in one‐dimensional –Cu1–Cu2–Cu3– chains along the [001] direction. Further crosslinking of these chains by HPIDC2− ligands along the b axis in a –Cu2–HPIDC2−–Cu3–HPIDC2−–Cu1– sequence results in a two‐dimensional polymer in the (100) plane. The resulting (2,3)‐connected net has a (123)2(12)3 topology. Powder X‐ray diffraction confirmed the phase purity for (I), and susceptibilty measurements indicated a very weak ferromagnetic behaviour. A thermogravimetric analysis shows the loss of the apical aqua ligand before decomposition of the title compound.  相似文献   

17.
The new asymmetrical organic ligand 2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole ( L , C17H13N5O), containing pyridine and imidazole terminal groups, as well as potential oxdiazole coordination sites, was designed and synthesized. The coordination chemistry of L with soft AgI, CuI and CdII metal ions was investigated and three new coordination polymers (CPs), namely, catena‐poly[[silver(I)‐μ‐2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole] hexafluoridophosphate], {[Ag( L )]PF6}n, catena‐poly[[copper(I)‐di‐μ‐iodido‐copper(I)‐bis(μ‐2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole)] 1,4‐dioxane monosolvate], {[Cu2I2( L )2]·C4H8O2}n, and catena‐poly[[[dinitratocopper(II)]‐bis(μ‐2‐{4‐[(1H‐imidazol‐1‐yl)methyl]phenyl}‐5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazole)]–methanol–water (1/1/0.65)], {[Cd( L )2(NO3)2]·2CH4O·0.65H2O}n, were obtained. The experimental results show that ligand L coordinates easily with linear AgI, tetrahedral CuI and octahedral CdII metal atoms to form one‐dimensional polymeric structures. The intermediate oxadiazole ring does not participate in the coordination interactions with the metal ions. In all three CPs, weak π–π interactions between the nearly coplanar pyridine, oxadiazole and benzene rings play an important role in the packing of the polymeric chains.  相似文献   

18.
A series of novel soluble pyridazinone‐ or pyridazine‐containing poly(arylene ether)s were prepared by a polycondensation reaction. The pyridazinone monomer, 6‐(4‐hydroxyphenyl)pyridazin‐3(2H)‐one ( 1 ), was synthesized from the corresponding acetophenone and glyoxylic acid in a simple one‐pot reaction. The pyridazinone monomer was successfully copolymerized with bisphenol A (BPA) or 1,2‐dihydro‐4‐(4‐hydroxyphenyl)phthalazin‐1(2H)‐one (DHPZ) and bis(4‐fluorophenyl)sulfone to form high‐molecular‐weight polymers. The copolymers had inherent viscosities of 0.5–0.9 dL/g. The glass‐transition temperatures (Tg's) of the copolymers synthesized with BPA increased with increasing content of the pyridazinone monomer. The Tg's of the copolymers synthesized from DHPZ with different pyridazinone contents were similar to those of the two homopolymers. The homopolymers showed Tg's from 202 to 291 °C by differential scanning calorimetry. The 5% weight loss temperatures in nitrogen measured by thermogravimetric analysis were in the range of 411–500 °C. 4‐(6‐Chloropyridazin‐3‐yl)phenol ( 2 ) was synthesized from 1 via a simple one‐pot reaction. 2 was copolymerized with 4,4′‐isopropylidenediphenol and bis(4‐fluorophenyl)sulfone to form high‐Tg polymers. The copolymers with less than 80 mol % pyridazinone or chloropyridazine monomers were soluble in chlorinated solvents such as chloroform. The copolymers with higher pyridazinone contents and homopolymers were not soluble in chlorinated solvents but were still soluble in dipolar aprotic solvents such as N‐methylpyrrolidinone. The soluble polymers could be cast into flexible films from solution. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3328–3335, 2006  相似文献   

19.
Poly(1,1‐bis(ethoxycarbonyl)‐2‐vinyl cyclopropane (ECVP)‐graft‐dimethyl siloxane) copolymers were prepared using a macromonomer approach. Poly(dimethyl siloxane) (PDMS) macromonomers were prepared by living anionic polymerization of cyclosiloxanes followed by sequential chain‐end capping with allyl chloroformate. These macromonomers were then copolymerized with ECVP. MALDI‐ToF mass spectrometry and 1H NMR spectroscopy were used to show that the macromonomers had approximately 80% of the end groups functionalized with allyl carbonate groups. Gradient polymer elution chromatography showed that high yields of the graft copolymers were obtained, along with only small fractions of the PECVP and PDMS homopolymers. Differential scanning calorimetry showed that the low glass transition temperature (Tg) of the PDMS component could be maintained in the graft copolymers. However, the Tg was a function of polymer composition and the polymers produced had Tgs that ranged from ?50 to ?120 °C. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

20.
We successfully synthesized new D‐A copolymers that employ 1,10‐bithienopyrrolodione (biTPD), thiophene, and selenophene‐based donor monomeric units. Two polymers, PBTPDEBT and PBTPDEBS , exhibited high degrees of crystallinity and unique polymer chain arrangements on the substrate, which is attributed to their enhanced coplanarity and intermolecular interactions between the polymer chains. Among the thin‐film transistor devices made of PBTPDEBT and PBTPDEBS , the annealed PBTPDEBS device displayed relatively high hole mobility, which was twice that of the PBTPDEBT ‐based device. In addition, an organic photovoltaic device based on a PBTPDEBS :PC71BM blend displayed the maximum power conversion efficiency of 3.85%. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1228–1235  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号