首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two sets of water‐soluble poly(phenylene vinylene)s were synthesized and their optical properties were studied. The aqueous solubility of all these polymers is rendered by pendant sulfonate groups. One set of polymers (polymer I series) contains, in addition to the sulfonate pendants, dimethoxy substituents, while the other (polymer II series) contains oligo(ethylene oxide) side chains. Within each set, polymers containing lithium (Ia and IIa), sodium (Ib and IIb), and potassium (Ic and IIc) counter ions were prepared. The two sets of polymers showed different properties from physical appearance (fiber vs film) to thermal properties and to optical properties. It was found that set I polymers, with shorter side chains, exhibit stronger aggregation in aqueous solutions than set II polymers, which led to their lower fluorescence quantum yields and lower polymer‐to‐MV2+ quenching efficiencies. Within each set, the effect of counter ions on optical properties was noted. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5123–5135, 2007  相似文献   

2.
Fluorene‐based polymers containing various fluorinated benzene (fluorobenzene, p‐difluorobenzene, and tetrafluorobenzene) moieties were synthesized. In addition, perfluorooctylation of poly‐[(9,9‐dioctylfluorene‐2,7‐diyl)‐co‐(fluorene‐2,7‐diyl)] was carried out to afford fluorene‐based polymers with perfluorooctyl moiety at the 9‐position on the fluorene ring. To evaluate the effect of fluorine moiety, polymers containing nonfluorinated benzene moieties and nonfluorinated octyl groups were synthesized. The photoluminescence measurements indicated that all these polymers exhibited blue emission in solution, but a polymer containing a perfluorooctyl group did not emit in the film state. Polymers containing various fluorinated benzene moieties showed higher fluorescence quantum yields and thermal stability than those containing nonfluorinated benzene. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3143–3150, 2001  相似文献   

3.
Copolymers containing oligo(phenylene vinylene) (2.5), fluorene, and 4,4‐dihexyldithienosilole (DTS) units were synthesized and characterized. The π‐conjugated monomers were joined with the palladium(0)‐catalyzed Suzuki–Miyaura coupling reaction, thus forming either biphenyl– or phenyl–thiophene linkages. These polymers were photoluminescent, with the fluorescent quantum efficiency between 54 and 63% and with λmax for fluorescence at ~448 nm in tetrahydrofuran. The presence of 5% DTS in the copolymers had little influence on the optical absorption and emission wavelengths. Double‐layer light‐emitting‐diode devices using these polymers as emissive layers had low turn‐on voltages (3.5–4 V) and moderate external quantum efficiencies (0.14–0.30%). The results show that DTS plays a positive role in improving the charge‐injection characteristics of poly(phenylene vinylene) materials. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2048–2058  相似文献   

4.
π‐Conjugated polymers (Poly1–Poly3) containing a 2,2′‐bipyridine (bpy) unit were subjected to coordination to nickel and copper dithiolate for the purpose of manipulating the photophysical properties. The absorption maximum peak of Poly1 [maximum wavelength (λmax) = 446 nm] redshifted by 36 nm upon the coordination of bpy to NiCl2, which produced Poly1–NiCl2. A further bathochromic shift was observed in the spectrum of Poly1–mntNi [mntNi = (maleonitrile dithiolate)nickel; λmax = 499 nm] bearing the dithiolate ligand, which stemmed from the extension of the conjugated system over the nickel dithiolate moiety through the bpy unit. An increase in the [Ni]/[bpy] ratio in Poly1–mntNi rendered the original maximum peak at 446 nm smaller and the lower energy charge‐transfer peak at 499 nm larger; the isosbestic points remained at 380 and 475 nm. The green fluorescence (λmax = 504 nm) emitted from Poly1 markedly diminished upon the coordination of nickel dithiolate because of the effective energy transfer. The absorption maximum peak of Poly1–mntNi in chloroform at 499 nm blueshifted to 471 nm when the volume ratio of the chloroform/N,N‐dimethylformamide solvent reached 10:90. The coordination of nickel dithiolate to Poly2 and Poly3 also brought about redshifts of the absorption maximum peaks of as much as 55 and 61 nm, respectively. The absorption maximum peak of Poly1–(phenyldithiolate)nickel(pdtNi) (λmax = 474 nm) redshifted by 28 nm in comparison with that of Poly1, whereas the magnitude of the shift of Poly1–bis(thiophenoxide)nickel(btpNi) bearing two thiophenoxide ligands was 20 nm. Poly1–mntCu with a tetrahedral copper center was also investigated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2631–2639, 2004  相似文献   

5.
Three sulfonato‐containing fluorene‐based anionic water‐soluble conjugated polymers, which are specially designed to link fluorene with alternating moieties such as bipyridine ( P1 ), pyridine ( P2 ), and benzene ( P3 ) have been synthesized via the Pd‐catalyzed Sonogashira‐coupling reaction, respectively. These polymers had good solubility in water and showed different responses for transition metal ions with different valence in aqueous environments: the fluorescence of bipyridine‐containing P1 can be completely quenched by addition of all transition metal ions selected and showed a good selectivity for Ni2+; the pyridine‐containing P2 had a little response for monovalent and divalent metal ions while showed good quenching with the addition of trivalent metal ions (with a special selectivity for Fe3+); P3 had responses only for the trivalent metal ions within the ionic concentration we studied. After investigation of the UV‐vis absorption spectra, PL emission spectra, DLS, and fluorescence lifetime of P1 – P3 in aqueous solution when adding transition metal ions, we found that the different spectrum responses of these polymers are attributed to the different coordination ability of the units linked with fluorene in the main chain. The energy or electron‐transfer reactions were the main reason for fluorescence quenching of P1 and P2 . On the other hand, interchain aggregation caused by trivalent metal ions lead to fluorescence quenching for P3 and also caused partly fluorescence quenching of P1 and P2 . These results revealed the origin of ionochromic effects of these polymers and suggested the potential application for these polymers as novel chemosensors with higher sensing sensitivity in aqueous environments. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5057–5067, 2009  相似文献   

6.
We report novel liquid crystalline (LC) polymers containing pendant azobenzene moieties with n‐dodecyl substituents and ethyleneoxy spacers of different lengths and describe their selective detection behaviors to alkali metal ions. The new azopolymers produce homogenous smectic phases with a typical fan‐shaped texture. UV‐Vis and 1H NMR studies confirm that the azopolymers selectively bind to Li+ and Na+, but do not complex with K+, Ba2+, Mg2+, or Ca2+. Both the ethyleneoxy spacer and azobenzene units participate in binding to Li+ and Na+ cations in solution. Interestingly, after formation of the complexed structure, the ratio of cis to trans conformer is considerably increased suggesting stronger interactions of the cis conformer with alkali metal ions. Irradiation of the complexed structure with 365 nm UV induces conversion of the uncomplexed trans to the cis. These findings suggest a great potential of the LC azopolymers as selective sensors or separation membranes for alkali metal ions. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1713–1723  相似文献   

7.
Novel ABA‐type dumbbell‐like water‐soluble copolymers [D230(EI)4, D400(EI)4, and D400(EI)8] were synthesized by introducing ethylenimine (EI) groups into both sides of polyoxypropylenediamines via a simple in situ ethylamination of polyoxypropylenediamine with 2‐chloroethylamine hydrochloride. The structures of the resultant polymers were identified by Fourier transform infrared spectroscopy and 1H NMR. The percentages of primary, secondary, and tertiary amine present were determined by the potentiometric titration method after treatments with the appropriate chemicals of salicylaldehyde and acetic anhydride. The surface tension and solubilizing behavior of pyrene in the presence of these polymers in aqueous medium were also investigated, and the efficiency to reduce the surface tension and solubilizing behavior of pyrene depends on the attachments of EI to polymer backbone. The chelating properties of these polymers were examined quantitatively by ultraviolet–visible (UV–vis) spectroscopy in the presence of Cu2+ ions in aqueous solution, and continuous variation analysis revealed that the most stable complex is formed at the normality ratio of [N]/[Cu2+] = 3.0. UV–vis spectroscopy and transmission electron microscopy were used to evaluate the dumbbell‐like water‐soluble copolymer, D400(EI)8, as a stabilizer for preparing colloidal noble metal nanoparticles (Au and Pt) in aqueous solution. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1360–1370, 2003  相似文献   

8.
Two new π‐conjugated polymers containing 1,3,5‐triazine units in the main chain, Pa and Pb , are reported. Pa and Pb (R = H and ? OCH3, respectively) showed blue photoluminescence emissions with quantum yields of more than 50% in toluene. In the solid state, Pa and Pb showed photoluminescence maximum emission peaks at 479 and 475 nm, respectively. Electrochemically, Pa and Pb showed good stability and reversibility under repeated electrochemical reduction. The polymers had glass‐transition temperatures higher than 90 °C and had 5 wt % loss temperatures higher than 400 °C. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6554–6561, 2005  相似文献   

9.
A series of viologen polymers with bromide, tosylate, and triflimide as counterions were prepared by either the Menshutkin reaction or metathesis reaction in a common organic solvent. Their polyelectrolyte behavior in methanol was determined by solution viscosity measurements, and their chemical structures were determined by Fourier transform infrared and Fourier transform NMR spectroscopy. They were characterized for their thermotropic liquid‐crystalline properties with a number of experimental techniques. Each of the viologen polymers with organic counterions had a low melting transition or fusion temperature above which it formed either a high‐order smectic phase or a low‐order smectic phase. Each of them also exhibited a smectic‐to‐isotropic transition. The ranges of the liquid‐crystalline phase were 80–88 °C for viologen polymers with tosylate as a counterion and 120–146 °C for viologen polymers with triflimide as a counterion. They had excellent thermal stability. The ranges of thermal stability were 288–329 °C for viologen polymers with tosylate as a counterion and 343–350 °C for viologen polymers with triflimide as a counterion. The fluorescence property for all of the viologen polymers in either aqueous or methanol solution was also included in this study. For example, the viologen polymer containing the 4,4′‐bipyridinium and p‐xylyl units along the backbone of the polymer chain with triflimide as a counterion had an absorption spectrum (λmax = 265 nm), an excitation spectrum (λex values = 357, 443, and 454 with monitoring at 533 nm), and an emission spectrum (λem = 536 nm with excitation at 430 and 450 nm) in methanol. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 659–674, 2002; DOI 10.1002/pola.10134  相似文献   

10.
New through‐space cyano‐substituted poly(p‐arylenevinylene)s containing a [2.2]paracyclophane unit were synthesized by the Knoevenagel reaction. Polymers 5 and 7 have cyano groups at α‐positions and β‐positions from the dialkoxyphenylene unit, respectively. Their optical and electrochemical behaviors were investigated in detail in comparison with their model compounds. Polymers 5 and 7 exhibited through‐space conjugation via the cyclophane units. Polymer 5 showed greenish blue emission (λmax = 477 nm) in diluted solution with fluorescence quantum efficiency (?F) of only 0.007, whereas polymer 7 emitted in the bluish green region (λmax = 510 nm) with ?F of 0.32. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5979–5988, 2009  相似文献   

11.
Blue‐emitting poly{[5‐(diphenylamino)‐1,3‐phenylenevinylene]‐alt‐(2‐hexyloxy‐5‐methyl‐1,3‐phenylenevinylene)} ( 3 ), poly{[5‐bis‐(4‐butyl‐phenylamino)‐1,3‐phenylenevinylene]‐alt‐(1,3‐phenylene vinylene)} ( 4 ), and poly(2‐hexyloxy‐5‐methyl‐1,3‐phenylenevinylene) ( 5 ) were synthesized by the Wittig–Horner reaction. Although polymers 3–5 possess fluorescent quantum yields of only 13–34% in tetrahydrofuran solution, their films appear to be highly luminescent. Attachments of substituents tuned the emission color of thin films to the desirable blue region (λmax = 462–477 nm). Double‐layer light‐emitting‐diode devices with 3 and 5 as an emissive layer produced blue emission (λem = 474 and 477 nm) with turn‐on voltages of 8 and 11 V, respectively. The external quantum efficiencies were up to 0.13%. © 2005Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2800–2809, 2005  相似文献   

12.
Well‐defined mono‐ and bifunctional, phenanthroline‐terminated poly(ethylene glycol) and polyisobutylene capable of polymer network formation were synthesized. The starting materials mono‐ and bi‐phenanthroline‐ (phen) terminated poly(ethylene glycols) (mPEG‐phen, phen‐PEG‐phen) and polyisobutylenes (PIB‐phen, phen‐PIB‐phen) were prepared by the Williamson synthesis and characterized by means of 1H NMR and MALDI‐TOF mass spectrometry. According to UV–Vis spectrophotometry and ESI‐TOF mass spectrometry, the phenanthroline‐terminated polymers underwent quantitative complex formation with ferrous ions in solution. The aqueous solution of mPEG‐phen shows self‐assembly behavior. Important parameters, such as critical micelle concentration and hydrodynamic radius of the aggregates were also determined. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2709–2715, 2010  相似文献   

13.
Water‐soluble luminescent material was developed by introducing europium (Eu(III)) ions into the core of a star polymer. Living radical polymerization was used to obtain the star polymer. The strategy to introduce Eu(III) ions into the star polymer was studied using poly(methyl methacrylate) as an arm. The best Eu(III) ion introduction was obtained by simultaneous introduction, resulting in about 30 µmol/g‐polymer, which needed only one step for synthesis. The utilization of a hydrophilic polymer such as poly(ethylene oxide) (PEO) as an arm produced a water‐soluble star polymer. The Eu(III)‐bearing PEO star polymer obtained in this study was water soluble and showed fluorescence. In addition, it was stable in water after 1 month. The Eu(III)‐bearing star polymer exhibited luminescent properties under UV light irradiation with relatively high quantum yields of 60% in organic solution and 19% in aqueous solution. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2527–2535  相似文献   

14.
A series of novel crown ether‐containing photochromic comb‐shaped liquid crystalline polyacrylates with different macromolecular structure of side groups were synthesized and investigated. Phase behavior, optical and photo‐optical properties of thin spin‐coated films of these polymers were studied. A special attention was paid to a comparative study of the photo‐orientation phenomena occurring in the polymer films under a polarized light action. It was shown that complex formation with the potassium ions results in the decrease in degree of the photoinduced order that can be used for the creation of new materials for sensor devices. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
An imidazole‐terminated hyperbranched polymer with octafunctional POSS branching units denoted as POSS‐HYPAM‐Im was prepared by the polymerization of excess amounts of tris(2‐aminoethyl)amine with the first‐generation methyl ester‐terminated POSS‐core poly(amidoamine)‐typed dendrimer, reacting with methyl acrylate, and ester‐amide exchange reaction with 3‐aminopropylimidazole. The imidazole‐terminated hyperbranched poly(amidoamine) denoted as HYPAM‐Im was also synthesized with 1‐(3‐aminopropyl)imidazole from a methyl ester‐terminated hyperbranched poly(amidoamine) by the ester‐amide exchange reaction. The transmittance of the POSS‐HYPAM‐Im solution drastically decreased when the solution pH was greater than 8.2. On the other hand, the transmittance of the HYPAM‐Im solution gradually decreased when the solution pH at 8.5 and was greater than 9. Spectrophotometric titrations of the hyperbranched polymer aqueous solutions with Cu2+ ions indicated the variation of the coordination modes of POSS‐HYPAM‐Im from the Cu2+–N4 complex to the Cu2+–N2O2 complex and the existence of the only one complexation mode of Cu2+–N4 between Cu2+ ion and HYPAM‐Im with increasing the concentrations. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2695–2701  相似文献   

16.
Metallo‐supramolecular polymers offer attractive possibilities to combine the properties of polymers with the characteristics offered by the metal–ligand coordination. Here we present for the first time the combination of metal‐bis(terpyridine) complexes and lower critical solution temperature (LCST) polymers that can be switched by addressing either the thermosensitive polymer or the metal complex. We describe a new strategy for the synthesis of poly(Nisopropylacrylamide) (PNIPAM) end functionalized with a terpyridine moiety, which is further used for the preparation of FeII and ZnII‐bis(terpyridine PNIPAM). The comparison of the LCST behavior of the uncomplexed ligands and their metal complexes that bear different counter ions is included. Furthermore, the switchability of the synthesized FeII system is demonstrated by a decomplexation reaction followed by the characterization of the uncomplexed ligand.

  相似文献   


17.
Two neutral precursor conjugated copolymers based 2,7‐diethynylfluorene and 3,6‐diethynylcarbazole units in the main chain ( PFC and PF2C ) were prepared by Hay coupling polymerization. Their cationic copolymers ( CPFC and CPF2C ) were prepared by the methylation of their diethylpropylamino groups with CH3I. For comparison, neutral conjugated homopolymers of 2,7‐diethynylfluorene ( PF ), 3,6‐diethynylcarbazole units ( PC ) and their cationic polymers ( CPF and CPC ) were also prepared with the same method. A comparative study on the optical properties of cationic polymers CPFC and CPF2C in DMF and DMF/H2O showed that they underwent water‐induced aggregation. The spectral behaviors of CPFC and CPF2C with calf thymus DNA showed that a distinct fluorescent quenching took place with minute addition of CT DNA (3.3 × 10?13 M). The results showed that the polymers would be promising biosensor materials for sensitive detection of DNA. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 4168–4177, 2010  相似文献   

18.
Ni(0)‐complex promoted dehalogenation polymerization of 1,2‐bis(4‐bromophenyl)ethylene derivatives gave poly(p‐biphenylene vinylene) type polymers, [—C6H2R—CR2 = CR2—C6H2R—)n (P(R1,H) and P(H,R2) ], having substituents (R1 = Me, Et, CHMe2, and n‐C8H17, R2 = Me, Et, n‐C6H13, n‐C11H23, and Ph) at the benzene ring or vinylene group in 90–99% yields. The polymers were soluble in organic solvents such as CHCl3, dimethylformamide, and tetrahydrofuran, and gave Mn of 2.4–5.3 × 103 in gel permeation chromatography analysis. The absorption peak of the polymers appeared at a longer wavelength than that of the corresponding monomers by about 30 nm due to the expansion of the π‐conjugation system. The polymers were photoluminescent in solutions and in their films, emitting blue or green light. P(R1,H)s gave higher quantum yields (Φ = 0.35–0.51) than P(H,R2) s in CHCl3. P(H,R2) s showed a large Stokes shift (9600–13,500 cm−1) in their photoluminescence. Single‐layer and multilayer light emitting diodes using vacuum deposited thin film of P(H,Ph) were prepared. Polymers with long alkyl substituents formed an ordered structure in the solid state as judged from their XRD patterns. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1493–1504, 2000  相似文献   

19.
Organic polymers that contain ligated metals offer a variety of unique properties which include luminescence, electro‐ and photochemistry, catalysis, charge, magnetism, and thermochromism. These organic–inorganic hybrid materials have the potential to offer novel active matrixes for advanced devices. Continued progress in synthetic chemistry and molecular characterization will enable such advanced materials. Here the focus is restricted to side‐chain metal complexes with emissive properties that highlight the use of lanthanide ions as opposed to the often‐studied transition metal complexes.

  相似文献   


20.
This work aims at developing an approach to Ru(II)(Tpy)2‐functionalized hydrogels and exploring the coupling of the hydrogels with the Belousov‐Zhabotinsky (BZ) reaction. Based on free radical polymerization, two synthetic routes are developed. The first one is the direct gelation by copolymerization of acrylamide as hydrophilic component and Ru(II)(Tpy)2 as the functional group. The second one is carried out through a combined approach. A terpyridine‐containing hydrogel is first prepared and then post‐functionalized by coordination between Ru(III)(Tpy)Cl3 and terpyridine groups in the hydrogel network. Utilizing the synthetic hydrogels, the reversible redox responsiveness, the coupling with the BZ reaction, the occurrence and the self‐oscillating properties of the BZ reaction in the hydrogel networks are studied. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2214–2222  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号