首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this Note, we propose a finite element method with Lagrange multipliers in order to approximate contact problems with friction. The discretized normal and tangential constraints at the candidate contact interface are expressed by using continuous piecewise linear Lagrange multipliers in the saddle-point formulation. An optimal error estimate is established and several numerical studies corresponding to this choice of the discretized normal and tangential constraints are achieved. To cite this article: L. Baillet, T. Sassi, C. R. Acad. Sci. Paris, Ser. I 334 (2002) 917–922.  相似文献   

2.
Abstract

An optimal control problem for 2D and 3D elliptic equations is investigated with pointwise control constraints. This paper is concerned with the discretization of the control by piecewise linear but discontinuous functions. The state and the adjoint state are discretized by linear finite elements. The paper is focused on similarities and differences to piecewise constant and piecewise linear (continuous) approximation of the controls. Approximation of order h in the L -norm is proved in the main result.  相似文献   

3.
In this paper, we propose and study different mixed variational methods in order to approximate with finite elements the unilateral problems arising in contact mechanics. The discretized unilateral conditions at the candidate contact interface are expressed by using either continuous piecewise linear or piecewise constant Lagrange multipliers in the saddle-point formulation. A priori error estimates are established and several numerical studies corresponding to the different choices of the discretized unilateral conditions are achieved.

  相似文献   


4.
In this paper we analyze a characteristic finite element approximation of convex optimal control problems governed by linear convection-dominated diffusion equations with pointwise inequality constraints on the control variable, where the state and co-state variables are discretized by piecewise linear continuous functions and the control variable is approximated by either piecewise constant functions or piecewise linear discontinuous functions. A priori error estimates are derived for the state, co-state and the control. Numerical examples are given to show the efficiency of the characteristic finite element method.  相似文献   

5.
In this article, we investigate local discontinuous Galerkin approximation of stationary convection‐dominated diffusion optimal control problems with distributed control constraints. The state variable and adjoint state variable are approximated by piecewise linear polynomials without continuity requirement, whereas the control variable is discretized by variational discretization concept. The discrete first‐order optimality condition is derived. We show that optimization and discretization are commutative for the local discontinuous Galerkin approximation. Because the solutions to convection‐dominated diffusion equations often admit interior or boundary layers, residual type a posteriori error estimate in L2 norm is proved, which can be used to guide mesh refinement. Finally, numerical examples are presented to illustrate the theoretical findings. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 339–360, 2014  相似文献   

6.
In this paper, minimum-weight design of an elastic sandwich beam with a prescribed deflection constraint at a given point is investigated. The analysis is based on geometrical considerations using then-dimensional space of discretized specific bending stiffness. Since the present method of analysis is different from the method based on the calculus of variations, the conditions of piecewise continuity and differentiability on specific bending stiffness can be relaxed. Necessary and sufficient conditions for optimality are derived for both statically determinate and statically indeterminate beams. Beams subject to a single loading and beams subject to multiple loadings are analyzed. The degree to which the optimality condition renders the solution unique is discussed. To illustrate the method of solution, two examples are presented for minimum-weight designs under dual loading of a simply supported beam and a beam built in at both ends. The present analysis is also extended to the following problems: (a) optimal design of a beam built in at both ends with piecewise specific stiffness and a prescribed deflection constraint and (b) minimum-cost design of a sandwich beam with prescribed deflection constraints.The results presented in this paper were obtained in the course of research supported partly by the US Army Research Office, Durham, North Carolina, Research Grant No. DA-ARO-31-G1008, and partly by the Office of Naval Research, Contract No. N00014-67-A-0109-0003, Task No. NR 064-496. The authors wish to express their thanks to Professor H. Halkin for pointing out the applicability of optimal control theory to the present problem and to Professor W. Prager for his valuable suggestions.  相似文献   

7.
The aim of this paper is to develop an efficient hybrid computational model to analyze the frictional impact dynamic responses of soft finger during the tapping event. The large deformation field and inertial field of soft structure are discretized by absolute nodal coordinate formulation. Lagrange multiplier method is adopted to account for the constraints between neighbor phalanges. Considering tangential contact compliance, a lumped-parameter model at the local contact zone is presented to calculate contact forces. The governing equations of soft finger tapping system expressed by generalized coordinates are derived. An event driven scheme is given to analyze and evaluate the stick–slip transitions. The governing equation is integrated by generalized-α method. The applications of the hybrid computational model are demonstrated using various soft finger tapping systems acted by different driven moments. The feasibility of the proposed model is validated by comparing with the LS-DYNA solution. The error of the solution calculated by the proposed model for the peak value of contact force is less than 8%. Furthermore, numerical results show that the large structural compliance and driven moments have significant effect on the frictional impact responses. The normal relative motion between the fingertip and the rough target surface will experience 1∼4 compression-restitution transitions when Young's Modulus is from 0.01 GPa to 1 GPa or the slenderness ratio of phalanx is from 10.7 to 32. When the posture of soft finger is convex at impact instance, the tangential relative motion will experience 3 slip–stick transitions during the contact process. In addition, it also can be found that the tangential contact compliance can reverse the direction of slip (i.e. ‘reverse slip’ phenomenon).  相似文献   

8.
The numerical approximation to a parabolic control problem with control and state constraints is studied in this paper. We use standard piecewise linear and continuous finite elements for the space discretization of the state, while the dG(0) method is used for time discretization. A priori error estimates for control and state are obtained by an improved maximum error estimate for the corresponding discretized state equation. Numerical experiments are provided which support our theoretical results.  相似文献   

9.
Mixed finite element methods are applied to a fourth order reaction diffusion equation with different types of boundary conditions. Some a priori bounds are established with the help of Lyapunov functional. The semidiscrete schemes are derived using C0‐piecewise linear finite elements in spatial direction and error estimates are obtained. The semidiscrete problem is then discretized in the temporal direction using backward Euler method and the wellposedness of the completely discrete scheme is discussed. Finally, a priori error estimates are established. While deriving a priori error estimates, Gronwall's lemma is applied and the constants involved in the error bounds do not depend exponentially on $\frac{1}{\gamma}$, where γ is a parameter appeared in the fourth order derivative. © 2011Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2012  相似文献   

10.
《Optimization》2012,61(4):497-513
This paper deals with necessary conditions for optimization problems with infinitely many inequality constraints assuming various differentiability conditions. By introducing a second topology N on a topological vector space we define generalized versions of differentiability and tangential cones. Different choices of N lead to Gâteaux-, Hadamaed- and weak differentiability with corresponding tangential cones. The general concept is used to derive necessary conditions for local optimal points in form of inequalities and generalized multiplier rules, Special versions of these theorems are obtained for different differentiability assumptions by choosing properly. An application to approximation theory is given.  相似文献   

11.
A finite element method to approximate the vibration modes of a structure enclosing an acoustic fluid is analyzed. The fluid is described by using simultaneously pressure and displacement potential variables, whereas displacement variables are used for the solid. A mathematical analysis of the continuous spectral problem is given. The problem is discretized on a simplicial mesh by using piecewise constant elements for the pressure and continuous piecewise linear finite elements for the other fields. Error estimates are settled for approximate eigenvalues and eigenfrequencies. Finally, implementation issues are discussed.

  相似文献   


12.
In this article, we describe a discontinuous finite volume method with interpolated coefficients for the numerical approximation of the distributed optimal control problem governed by a class of semilinear elliptic equations with control constraints. The proposed distributed control problem involves three unknown variable: control, state and costate. For the approximation of control, we have adopted three different methodologies: variational discretization, piecewise constant and piecewise linear discretization, while the approximation of state and costate variables is based on discontinuous piecewise linear polynomials. As the resulted scheme is non‐symmetric, optimize‐then‐discretize approach is used to approximate the control problem. Optimal a priori error estimates in suitable natural norms for state, costate and control variables are derived. Moreover, numerical experiments are presented to support the derived theoretical results. © 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 2090–2113, 2017  相似文献   

13.
We present an approach to compute optimal control functions in dynamic models based on one-dimensional partial differential algebraic equations (PDAE). By using the method of lines, the PDAE is transformed into a large system of usually stiff ordinary differential algebraic equations and integrated by standard methods. The resulting nonlinear programming problem is solved by the sequential quadratic programming code NLPQL. Optimal control functions are approximated by piecewise constant, piecewise linear or bang-bang functions. Three different types of cost functions can be formulated. The underlying model structure is quite flexible. We allow break points for model changes, disjoint integration areas with respect to spatial variable, arbitrary boundary and transition conditions, coupled ordinary and algebraic differential equations, algebraic equations in time and space variables, and dynamic constraints for control and state variables. The PDAE is discretized by difference formulae, polynomial approximations with arbitrary degrees, and by special update formulae in case of hyperbolic equations. Two application problems are outlined in detail. We present a model for optimal control of transdermal diffusion of drugs, where the diffusion speed is controlled by an electric field, and a model for the optimal control of the input feed of an acetylene reactor given in form of a distributed parameter system.  相似文献   

14.
Summary We derive and analyze the hierarchical basis-multigrid method for solving discretizations of self-adjoint, elliptic boundary value problems using piecewise linear triangular finite elements. The method is analyzed as a block symmetric Gauß-Seidel iteration with inner iterations, but it is strongly related to 2-level methods, to the standard multigridV-cycle, and to earlier Jacobi-like hierarchical basis methods. The method is very robust, and has a nearly optimal convergence rate and work estimate. It is especially well suited to difficult problems with rough solutions, discretized using highly nonuniform, adaptively refined meshes.  相似文献   

15.
We study the numerical approximation of boundary optimal control problems governed by semilinear elliptic partial differential equations with pointwise constraints on the control. The analysis of the approximate control problems is carried out. The uniform convergence of discretized controls to optimal controls is proven under natural assumptions by taking piecewise constant controls. Finally, error estimates are established and some numerical experiments, which confirm the theoretical results, are performed.The first two authors were supported by Ministerio de Ciencia y Tecnología (Spain). The second author was also supported by the DFG research center “Mathematics for key technologies” (FZT86) in Berlin.  相似文献   

16.
A second‐order finite difference scheme for mixed boundary value problems is presented. This scheme does not require the tangential derivative of the Neumann datum. It is designed for applications in which the Neumann condition is available only in discretized form. The second‐order convergence of the scheme is proven and the theory is validated by numerical examples. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 23: 400–420, 2007  相似文献   

17.
For a class of two‐dimensional boundary value problems including diffusion and elasticity problems, it is proved that the constants in the corresponding strengthened Cauchy‐Buniakowski‐Schwarz (CBS) inequality in the cases of two‐level hierarchical piecewise‐linear/piecewise‐linear and piecewise‐linear/piecewise‐quadratic finite element discretizations with triangular meshes differ by the factor 0.75. For plane linear elasticity problems and triangulations with right isosceles triangles, formulas are presented that show the dependence of the constant in the CBS inequality on the Poisson's ratio. Furthermore, numerically determined bounds of the constant in the CBS inequality are given for plane linear elasticity problems discretized by means of arbitrary triangles and for three‐dimensional elasticity problems discretized by means of tetrahedral elements. Finally, the robustness of iterative solvers for elasticity problems is discussed briefly. © 1999 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 15: 469–487, 1999  相似文献   

18.
Summary. We employ a data-sparse, recursive matrix representation, so-called -matrices, for the efficient treatment of discretized integral operators. We obtain this format using local tensor product interpolants of the kernel function and replacing high-order approximations with piecewise lower-order ones. The scheme has optimal, i.e., linear, complexity in the memory requirement and time for the matrix-vector multiplication. We present an error analysis for integral operators of order zero. In particular, we show that the optimal convergence (h) is retained for the classical double layer potential discretized with piecewise constant functions.Corrigendum This revised version was published online in February 2005 due to typesetting mistakes in the author correction process.  相似文献   

19.
We discuss several optimization procedures to solve finite element approximations of linear-quadratic Dirichlet optimal control problems governed by an elliptic partial differential equation posed on a 2D or 3D Lipschitz domain. The control is discretized explicitly using continuous piecewise linear approximations. Unconstrained, control-constrained, state-constrained and control-and-state constrained problems are analysed. A preconditioned conjugate method for a reduced problem in the control variable is proposed to solve the unconstrained problem, whereas semismooth Newton methods are discussed for the solution of constrained problems. State constraints are treated via a Moreau–Yosida penalization. Convergence is studied for both the continuous problems and the finite dimensional approximations. In the finite dimensional case, we are able to show convergence of the optimization procedures even in the absence of Tikhonov regularization parameter. Computational aspects are also treated and several numerical examples are included to illustrate the theoretical results.  相似文献   

20.
A specific elliptic linear-quadratic optimal control problem with Neumann boundary control is investigated. The control has to fulfil inequality constraints. The domain is assumed to be polygonal with reentrant corners. The asymptotic behaviour of two approaches to compute the optimal control is discussed. In the first the piecewise constant approximations of the optimal control are improved by a postprocessing step. In the second the control is not discretized; instead the first order optimality condition is used to determine an approximation of the optimal control. Although the quality of both approximations is in general affected by corner singularities a convergence order of 3/2 can be proven provided that the mesh is sufficiently graded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号