首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A magnetic suspension balance was employed in experiments to measure gas solubility in the polymer melts. The gas solubilities of CO2 and N2 in both linear and branched Polypropylene (PP) were investigated. The swollen volumes predicted by the Sanchez–Lacombe equation of state (EOS) and Simha–Somcynsky EOS were applied to incorporate the buoyancy effect, which is essential for the accurate measurement of solubility data. The effects of the branched structure on the swollen volume and gas solubility were discussed. It was observed that the long chain branched PP exhibited less expandability than the linear PP, due to the entangled molecular chain structure. Therefore, the total amount of gas that was able to dissolve into the long chain branched PP turned out to be less. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2497–2508, 2007  相似文献   

2.
《Fluid Phase Equilibria》1999,164(1):107-115
The equilibrium solubilities of l-carvone and l-limonene in the binary (l-carvone–CO2 and l-limonene–CO2) and ternary (l-carvone–l-limonene–CO2) systems were obtained at 39°C and 49°C and at pressures ranging from 6 to 10 MPa. The solubilities of these components increased with a pressure increase or a temperature decrease. The solubility of l-limonene was higher than that of l-carvone at the same temperature and pressure. The correlation of the solubilities using Chrastil equation revealed that the solubilities of both components were strongly dependent on the density of CO2. In the ternary system simulating the actual spearmint oil composition, the solubility of l-carvone was similar but the solubility of l-limonene was lower as compared to their solubilities in the binary systems.  相似文献   

3.
In this study, sorption and diffusion of carbon dioxide (CO2) in wood‐fiber/polystyrene composites were investigated. The effects of gas pressure and fiber content on the solubility and diffusion coefficients were evaluated. A statistical analysis indicated that pressure is more important than fiber content in determining the solubility and diffusivity of CO2. An increase in saturation pressure causes an increase in the solubility and diffusion coefficients, whereas inclusion of the fibers decreases both of these properties. Models were developed to predict the uptake and diffusion coefficients of CO2 in the composite samples as functions of pressure and fiber content. A theoretical model based on Henry's law and the Langmuir equation compared favorably to the experimental data for CO2 solubility. This dual mode model also described both the transient sorption and desorption data, but only if the concentration‐dependent value of diffusivity was treated as a history‐dependent parameter. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 723–735, 2002  相似文献   

4.
《Fluid Phase Equilibria》2004,219(1):25-32
Binary and ternary solubilities of C.I. Disperse Blue 134 (1,4-bis(isopropylamino)anthraquinone) C.I. Disperse Yellow 16 (3-methyl-1-phenyl-5-pyrazolone) and their dye mixture in supercritical carbon dioxide (SC-CO2) were measured by a flow-type apparatus. The solubility measurements were carried out at the pressure ranges from 10.0 to 25.0 MPa for the binary systems at the temperatures from 323.15 to 383.15 K and for the ternary system at 383.15 K. An empirical equation was used to correlate the experimental binary solubilities of the dyes in terms of the density of carbon dioxide. To represent accurately the binary solubility of the dyes in terms of temperature and pressure, we used a modified Peng–Robinson–Stryjek–Vera equation of state (PRSV EOS). The ternary solubilities of the dye blend could be predicted successfully from binary parameters with the modified PRSV EOS.  相似文献   

5.
Pure gas solubility and permeability of H2, O2, N2, CO2, CH4, C2H6, C3H8, CF4, C2F6, and C3F8 in poly(1‐trimethylsilyl‐1‐propyne) (PTMSP) were determined as a function of pressure at 35°C. Permeability coefficients of the perfluorinated penetrants are approximately an order of magnitude lower than those of their hydrocarbon analogs, and lower even than those of the permanent gases. In striking contrast to hydrocarbon penetrants, PTMSP permeability to fluorocarbon penetrants decreases with increasing penetrant size. This unusual size‐sieving behavior in PTMSP is attributed to low perfluorocarbon solubilities in PTMSP coupled with low diffusion coefficients relative to those of their hydrocarbon analogs. In general, perfluorocarbon penetrants are less soluble than their hydrocarbon analogs in PTMSP. The difference in hydrocarbon and perfluorocarbon solubilities in high free volume, hydrocarbon‐rich PTMSP is much smaller than in hydrocarbon liquids and liquidlike polydimethylsiloxane. The low solubility of perfluorocarbon penetrants is ascribed to the large size of the fluorocarbons, which inhibits their dissolution into the densified regions of the polymer matrix and reduces the number of penetrant molecules that can be accommodated in Langmuir sites. From the permeability and sorption data, diffusion coefficients were calculated as a function of penetrant concentration. With the exception of H2 and the C3 analogs, all of the penetrants exhibit a maximum in their concentration‐dependent diffusion coefficients. Resolution of diffusion coefficients into a mobility factor and a thermodynamic factor reveals that it is the interplay between these two terms that causes the maxima. The mobility of the smaller penetrants (H2, O2, N2, CH4, and CO2) decreases monotonically with increasing penetrant concentration, suggesting that the net free volume of the polymer–penetrant mixture decreases as additional penetrant is added to PTMSP. For larger penetrants mobility either: (1) remains constant at low concentrations and then decreases at higher penetrant concentrations (C2H6, CF4, and C2F6); (2) remains constant for all concentrations examined (C3H8); or (3) increases monotonically with increasing penetrant concentration (C3F8). Presumably these results reflect the varying effects of these penetrants on the net free volume of the polymer–penetrant system. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 273–296, 2000  相似文献   

6.
A model of continuous‐site distribution for gas sorption in glassy polymers is examined with sorption data of CO2 and Ar in polycarbonate. A procedure is presented for determining from a measured isotherm the number of sorption sites in a polymer, an important parameter that previously had to be assumed. With this parameter value and solubility data obtained at zero pressure, the model can reasonably predict sorption isotherms of CO2 in glassy polycarbonate for a wide temperature range. The number of sorption sites and the average site volume evaluated from CO2 sorption isotherms are employed for the prediction of Ar sorption isotherms with zero‐pressure solubility data and the independently measured partial molar volume of Ar. A reasonable fit to the measured isotherms of Ar is achieved. With the proposed procedure, the continuous‐site model shows several advantages over the conventional dual‐mode sorption model. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 883–888, 2000  相似文献   

7.
We measured the ionic conductivity of amorphous poly[oligo (oxyethylene glycol) methacrylate] (PMEO)–lithium salt complexes under a CO2 pressure varying from 0.1 to 20 MPa. The pressure dependence of the conductivity was positive, and the conductivity was higher than that under an inert gas such as N2. The ion‐conductive behavior has been modeled using both the Vogel–Tammann–Fulcher (VTF) equation and activation volume theory. The calculated parameters of the VTF equation show that CO2 that had permeated into the PMEO matrix acts as solvent molecules to dissolve ions and lower the glass transition temperature at high pressures. The ionic conduction in PMEO complexes under high‐pressure CO2 was scarcely related to the VTF parameters and activation volume equations. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3151–3158, 2005  相似文献   

8.
The condensation polymerization in a methanol solution of four different esterified aldaric acids (D ‐glucaric, meso‐xylaric, meso‐galactaric, and D ‐mannaric) with even‐numbered alkylenediamines (C2–C12) gave polyhydroxypolyamides whose water solubilities and melting points were compared. In general, an increase in the alkylenediamine monomer length resulted in decreased polyamide water solubility. Differences in the polymer melting points and water solubilities were linked primarily to conformational differences of the monomer aldaryl units; for example, polyamides from meso‐galactaric acid with an extended zigzag conformation aldaryl monomer unit had higher melting points and lower water solubilities than those from D ‐glucaric and meso‐xylaric acids. The latter acid monomer units tended toward bent conformations that served to diminish intermolecular attractive forces between polymer chains, affecting polymer solubility and melting characteristics. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 594–603, 2000  相似文献   

9.
Free‐volume properties, size and distribution, in amorphous polystyrene exposed to CO2 gases have been measured as a function of pressure to 800 psi (5.5 MPa), of time, and of temperature using positron annihilation lifetime spectroscopy. The free volume increases significantly and its distribution broadens as a function of pressure. The free volume relaxes as a function of time with a characteristic time of 15 h, and 5.7 h for 400, and 800 psi, respectively, after depressurizing under vacuum. A portion of free volume created by CO2 exposure remains permanently in the polymer after CO2 exposure. The glass transition temperature decreases significantly as a function of CO2 pressure from the free‐volume data and is compared with the differential scanning calorimeter results. The observed free‐volume variations as a function of pressure, time, and temperature are discussed in terms of hole expansion, creation, free‐volume relaxation, plasticization, and hole filling in amorphous polymers. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 388–405, 2008  相似文献   

10.
The solubility of carbon dioxide (CO2) in binary mixtures of ethanol and n-decane has been measured using an in-house developed pressure-volume-temperature (PVT) apparatus at pressures up to 6 MPa and two different temperatures (303.2 and 323.2 K). Three different binary mixtures of ethanol and n-decane were prepared, and the densities of the prepared mixtures were measured over the studied pressure and temperature ranges. The experimental data of CO2 solubility in the prepared mixtures and their saturated liquid densities were then reported at each temperature and pressure. The solubility data indicated that the gas solubility reduced as the ethanol mole fraction in the liquid mixture increased. The dissolution of CO2 in the liquid mixtures resulted in the increase in the saturated liquid densities. The impact of gas dissolution on the saturated liquid densities was more pronounced at the lower temperature and lower ethanol compositions. The experimental solubility and density data were compared with the results of two cubic equations of state (EOSs), Soave–Redlich–Kwong (SRK) and Peng–Robinson (PR). The modeling results demonstrated that both EOSs could predict the solubility data well, while the saturated liquid densities calculated with the PR EOS were much better than those predicted with the SRK EOS.  相似文献   

11.
Interactions of polymers with compressed supercritical CO2 has been studied by using pressure‐controlled scanning calorimetry (PCSC). Global cubic thermal expansion coefficients (αpol‐g‐int) for medium density polyethylene (MDPE) and poly(vinylidene fluoride) (PVDF) saturated with supercritical CO2 have been determined at 352.4 K over the pressure range from 0.1 MPa to 100 MPa. In both cases, the isotherms of global αpol‐g‐int exhibit minima near 20 MPa. At pressures below the minimum, αpol‐g‐int for the PVDF–CO2 system are higher than for the MDPE–CO2 system, while at pressures above the minimum the opposite was observed. This proves that incorporation of CO2 in PVDF is stronger than in MDPE. The appearance of the minimum is attributed to the action of compressed CO2 molecules, which at higher pressures are forced to enter deep inside the interstitial or other voids in the polymer and cause their mechanical distension, which must be associated with an endothermic effect. The measurements have been performed on polymers used for fabrication of pipelines. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44:185–194, 2006  相似文献   

12.
New experimental results for the solubility of nitrogen and carbon dioxide in polystyrene are reported, accompanied by data on the change in volume of the polymer caused by the sorption process. The two phenomena were measured simultaneously with a combined technique, in which the quantity of penetrating fluid introduced into the system was evaluated by pressure‐decay measurements in a calibrated volume, whereas a vibrating‐wire force sensor was employed for weighing the polymer sample during sorption inside of the high‐pressure equilibrium cell. The use of the two techniques was necessary because the effects of swelling and solubility could not be decoupled in a single gravimetric or pressure‐decay measurement. The sorption of nitrogen in polystyrene was studied along three isotherms from 313 to 353 K at pressures up to 70 MPa. The sorption of carbon dioxide was measured along four isotherms from 338 to 402 K up to 45 MPa. The results are compared with values from the literature when possible, although our data extend significantly the pressure ranges of the latter. The uncertainties affecting our measurements with nitrogen are 1 mg of N2/g of polystyrene in solubility and 0.1% of the volume of the polymer. For carbon dioxide, the uncertainties are 5 mg of N2/g of polystyrene and 0.5% respectively, carbon dioxide being about 1 order of magnitude more soluble than nitrogen. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2063–2070, 2001  相似文献   

13.
Dry chitosan is an excellent candidate for facilitated transport membranes that can be utilized in industrial applications, such as fuel cell operations and other purification processes. This article is the first to report temperature effects on transport properties of CO2, H2, and N2 in a gas mixture typical of such applications. At a feed pressure of 1.5 atm, CO2 permeabilities increased (0.381–26.1 barrers) at temperatures of 20–150 °C with decreasing CO2/N2 (19.7–4.55) and CO2/H2 (3.14–1.71) separation factors. The pressure effect on solubilities and permeabilities were fitted to the extended dual mode model and its corresponding mixed gas permeation model. The dual mode and transport parameters, the sorption heats and the activation energies of Henry's and Langmuir's regimes and their pre‐exponential parameters were determined. The Langmuir's capacity constants were utilized to estimate chitosan's glass transition temperature (CO2: 172 °C, N2: 175 °C, and H2: 171 °C). The activation energies of diffusion in the Henry's law and Langmuir regimes were dependent on the collision diameter of the gases. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2620–2631, 2007  相似文献   

14.
It is known that the commercial surfactant Dehypon® Ls-54 is soluble in supercritical CO2 and that it enables formation of water-in-CO2 microemulsions. In this work we observed phase equilibrium for the Ls-54/CO2 and Ls-54/water/CO2 systems in the liquid CO2 region, from 278.15 to 298.15 K. In addition, the Peng–Robinson equation of state (PREOS) was used to model the phase behavior of Ls-54/CO2 binary system as well as to estimate water solubilities in CO2. Ls-54 in CO2 can have solubilities as high as 0.086 M at 278.15 K and 15.2 MPa. The stability of the microemulsion decreases with increasing concentration of water, and lower temperatures favor increased solubility of water into the one-phase microemulsion. The PREOS model showed satisfactory agreement with the experimental data for both Ls-54/CO2 and water/CO2 systems.  相似文献   

15.
The gas‐transport properties of poly[2,6‐toluene‐2,2‐bis(3,4‐dicarboxylphenyl)hexafluoropropane diimide] (6FDA‐2,6‐DAT) have been investigated. The sorption behavior of dense 6FDA‐2,6‐DAT membranes is well described by the dual‐mode sorption model and has certain relationships with the critical temperatures of the penetrants. The solubility coefficient decreases with an increase in either the pressure or temperature. The temperature dependence of the diffusivity coefficient increases with an increase in the penetrant size, as the order of the activation energy for the diffusion jump is CH4 > N2 > O2 > CO2. Also, the average diffusion coefficient increases with increasing pressure for all the gases tested. As a combined contribution from sorption and diffusion, permeability decreases with increases in the pressure and the kinetic diameter of the penetrant molecules. Even up to 32.7 atm, no plasticization phenomenon can be observed on flat dense 6FDA‐2,6‐DAT membranes from their permeability–pressure curves. However, just as for other gases, the absolute value of the heat of sorption of CO2 decreases with increasing pressure at a low‐pressure range, but the trend changes when the feed pressure is greater than 10 atm. This implies that CO2‐induced plasticization may occur and reduce the positive enthalpy required to create a site into which a penetrant can be sorbed. Therefore, a better diagnosis of the inherent threshold pressure for the plasticization of a glassy polymer membrane may involve examining the absolute value of the heat of sorption as a function of pressure and identifying the turning point at which the gradient of the absolute value of the heat of sorption against pressure turns from a negative value to a positive one. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 354–364, 2004  相似文献   

16.
The solubilities of He, H2, N2, O2, CO2, CH4, C2H6, C3H8, and n‐C4H10 were determined at 35°C and pressures up to 27 atmospheres in a systematic series of phase separated polyether–polyamide segmented block copolymers containing either poly(ethylene oxide) [PEO] or poly(tetramethylene oxide) [PTMEO] as the rubbery polyether phase and nylon 6 [PA6] or nylon 12 [PA12] as the hard polyamide phase. Sorption isotherms are linear for the least soluble gases (He, H2, N2, O2, and CH4), convex to the pressure axis for more soluble penetrants (CO2, C3H8, and n‐C4H10) and slightly concave to the pressure axis for ethane. These polymers exhibit high CO2/N2 and CO2/H2 solubility selectivity. This property appears to derive mainly from high carbon dioxide solubility, which is ascribed to the strong affinity of the polar ether linkages for CO2. As the amount of the polyether phase in the copolymers increases, gas solubility increases. The solubility of all gases is higher in polymers with less polar constituents, PTMEO and PA12, than in polymers with more polar PEO and PA6 units. CO2/N2 and CO2/H2 solubility selectivity, however, are higher in polymers with higher concentrations of polar repeat units. The sorption data are complemented with physical characterization (differential scanning calorimetry, elemental analysis, and wide angle X‐ray diffraction) of the various block copolymers. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2463–2475, 1999  相似文献   

17.
We investigated the crystallization growth of isotactic polypropylene under carbon dioxide (CO2) at various CO2 pressures and temperatures by in situ observation with a digital high‐fidelity microscope and a specially designed high‐pressure visualized cell. The fibrils within the spherulite were distorted and branched by crystallization under CO2 at pressures higher than 2 MPa, and this suggested the exclusion of CO2 from the growth front of the fibrils. The spherulite growth rate (G) at 140 °C increased with the CO2 pressure, attained a maximum value around 0.3 MPa, and then decreased. Above 6 MPa, it became slower than that under air at the ambient pressure. An analysis of the crystallization kinetics by the Hoffman–Lauritzen theory revealed that the pressure dependence of G could be ascribed to the change in the transportation rate of crystallizable molecules (βg) with pressure; that is, βg increased and then decreased with pressure. The increase in βg at a low pressure was caused by the plasticizing effect of CO2, whereas the decrease in βg at a high pressure was due to the exclusion of CO2 from the crystal growth front. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1565–1572, 2004  相似文献   

18.
《Fluid Phase Equilibria》2005,231(1):11-19
Solid–liquid phase transitions of vanillin, ethylvanillin, o-vanillin and o-ethylvanillin in presence of compressed CO2 were determined with the modified capillary method. Furthermore, the solubilities of the above mentioned vanillins in supercritical CO2 were measured at 313.2, 333.2 and 353.2 K and in the pressure range 8–30 MPa using a static–analytic method. The experimental equilibrium solubility data have been fitted to the Peng–Robinson equation in combination with two parameter van der Waals mixing rules and binary parameters were determined from the best fit. Results showed that the phase equilibria of vanillins in dense CO2 are influenced by the position of the hydroxyl group bound to the aromatic ring. Under the pressure of CO2 the melting point depression and also the solubility of both o-vanillins was higher than those of p-vanillins. Oppositely, the alchoxy group (methoxy or ethoxy) showed no significant influence on the solubility of vanillins.  相似文献   

19.
Supercritical carbon dioxide (CO2) and poly(ethylene glycol) (PEG) can be utilized as an environmentally friendly biphasic solvent system for catalysis reactions and subsequent product separation. To efficiently implement this technology, it is important to understand how solutes partition between these phases as well as how dissolved CO2 in PEG affects the solvent properties. The work presented here explores the influence of CO2 on the solubility of four different solutes in PEG. The transferable potentials for phase equilibria-united atom force field and configurational-bias Monte Carlo molecular simulation were employed to determine the solubilities of ethylbenzene, 1-octene, 1-pentanol, and 2-pentanone at 323.15 K and 15?MPa in PEG-600 using an ideal vapor phase with a Poynting-corrected vapor pressure. The effect of CO2 concentration within the PEG phase was determined by varying the amount from no CO2 to the saturation limit. The results indicate that while there is preferential solvation of CO2 around the solutes, solubility of non-polar solutes is unchanged whereas there is a modest increase for polar solutes as the concentration of CO2 increases. Increased solubility is analyzed in terms of both modified solvent structure and direct solute–CO2 interactions.  相似文献   

20.
High‐pressure vapor‐liquid phase equilibrium data for carbon dioxide+isopentanol were measured at temperatures of 313.2, 323.1, 333.5 and 343.4 K in the pressure range of 4.64 to 12.71 MPa in a variable‐volume high‐pressure visual cell. The experimental data were well correlated with Peng‐Robinson equation of state (PR‐EOS) together with van der Waals‐2 two‐parameter mixing rule, and the binary interaction parameters were obtained. Henry coefficients and partial molar volumes of CO2 at infinite dilution were estimated based on Krichevsky‐Kasarnovsky equation, and Henry coefficients increase with increasing temperature, however, partial molar volumes of CO2 at infinite dilution are negative and the magnitudes decrease with temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号