首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, we show the convergence of the multipoint flux approximation (MPFA) L‐method. To do so, we introduce a boundary modification of the original MPFA L‐method. On basis of this local modification, we obtain the equivalence between the MPFA L‐method and a conforming finite element approach with modified right hand side. The influence of the modified right hand side can be easily analyzed within the abstract framework of variational crimes. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

2.
In this paper we show first-order convergence of a multi-point flux approximation control volume method (MPFA) on unstructured triangular grids. In this approach the flux approximation is derived directly in the physical space. In order to do this, we introduce a perturbed mixed finite element method that is equivalent to the MPFA scheme and prove the first-order convergence of this approach. Moreover, we carefully compare the computational performance properties of the MPFA method with those of a lowest order Raviart–Thomas and Brezzi–Douglas–Marini mixed finite element approximation.  相似文献   

3.
In this article, we consider the finite volume element method for the second‐order nonlinear elliptic problem and obtain the H1 and W1, superconvergence estimates between the solution of the finite volume element method and that of the finite element method, which reveal that the finite volume element method is in close relationship with the finite element method. With these superconvergence estimates, we establish the Lp and W1,p (2 < p ≤ ∞) error estimates for the finite volume element method for the second‐order nonlinear elliptic problem. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

4.
A nonconforming (Crouzeix–Raviart) finite element method with subgrid viscosity is analyzed to approximate advection‐diffusion‐reaction equations. The error estimates are quasi‐optimal in the sense that keeping the Péclet number fixed, the estimates are suboptimal of order in the mesh size for the L2‐norm and optimal for the advective derivative on quasi‐uniform meshes. The method is also reformulated as a finite volume box scheme providing a reconstruction formula for the diffusive flux with local conservation properties. Numerical results are presented to illustrate the error analysis. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

5.
Markus Bause 《PAMM》2007,7(1):1024703-1024704
This paper focuses on the reliable and efficient numerical approximation of subsurface water flows. The locally mass conservative B rezzi- D ouglas- M arini ( BDM 1) mixed finite element method is considered and compared to a lowest order R aviart– T homas ( RT 0) mixed finite element approach and a M ulti P oint F lux A pproximation. Appreciable advantage of the BDM1 element is that it yields a formally second order accurate flux approximation whereas the RT0 and MPFA approach are of first order accuracy only. The problem to be analyzed in this work is whether a superiority of the BDM1 element can also be observed in reservoir simulation where discontinuous and full permeability tensors on non-uniform grids arise and the fluxes lack the regularity that is assumed customarily in optimal order error analyses. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
By using a special interpolation operator developed by Girault and Raviart (finite element methods for Navier‐Stokes Equations, Springer‐Verlag, Berlin, 1986), we prove that optimal error bounds can be obtained for a fourth‐order elliptic problem and a fourth‐order parabolic problem solved by mixed finite element methods on quasi‐uniform rectangular meshes. Optimal convergence is proved for all continuous tensor product elements of order k ≥ 1. A numerical example is provided for solving the fourth‐order elliptic problem using the bilinear element. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

7.
This article focuses on discontinuous Galerkin method for the two‐ or three‐dimensional stationary incompressible Navier‐Stokes equations. The velocity field is approximated by discontinuous locally solenoidal finite element, and the pressure is approximated by the standard conforming finite element. Then, superconvergence of nonconforming finite element approximations is applied by using least‐squares surface fitting for the stationary Navier‐Stokes equations. The method ameliorates the two noticeable disadvantages about the given finite element pair. Finally, the superconvergence result is provided under some regular assumptions. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 23: 421–436, 2007  相似文献   

8.
In this paper, we will investigate a two grid finite element discretization method for the semi‐linear hyperbolic integro‐differential equations by piecewise continuous finite element method. In order to deal with the semi‐linearity of the model, we use the two grid technique and derive that once the coarse and fine mesh sizes H, h satisfy the relation h = H2 for the two‐step two grid discretization method, the two grid method achieves the same convergence accuracy as the ordinary finite element method. Both theoretical analysis and numerical experiments are given to verify the results.  相似文献   

9.
In this article, we consider a single‐phase coupled nonlinear Stefan problem of the water‐head and concentration equations with nonlinear source and permeance terms and a Dirichlet boundary condition depending on the free‐boundary function. The problem is very important in subsurface contaminant transport and remediation, seawater intrusion and control, and many other applications. While a Landau type transformation is introduced to immobilize the free boundary, a transformation for the water‐head and concentration functions is defined to deal with the nonhomogeneous Dirichlet boundary condition, which depends on the free boundary function. An H1‐finite element method for the problem is then proposed and analyzed. The existence of the approximation solution is established, and error estimates are obtained for both the semi‐discrete schemes and the fully discrete schemes. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

10.
This article presents a new type of second‐order scheme for solving the system of Euler equations, which combines the Runge‐Kutta discontinuous Galerkin (DG) finite element method and the kinetic flux vector splitting (KFVS) scheme. We first discretize the Euler equations in space with the DG method and then the resulting system from the method‐of‐lines approach will be discretized using a Runge‐Kutta method. Finally, a second‐order KFVS method is used to construct the numerical flux. The proposed scheme preserves the main advantages of the DG finite element method including its flexibility in handling irregular solution domains and in parallelization. The efficiency and effectiveness of the proposed method are illustrated by several numerical examples in one‐ and two‐dimensional spaces. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

11.
In this paper, we introduce numerical schemes and their analysis based on weak Galerkin finite element framework for solving 2‐D reaction–diffusion systems. Weak Galerkin finite element method (WGFEM) for partial differential equations relies on the concept of weak functions and weak gradients, in which differential operators are approximated by weak forms through the Green's theorem. This method allows the use of totally discontinuous functions in the approximation space. In the current work, the WGFEM solves reaction–diffusion systems to find unknown concentrations (u, v) in element interiors and boundaries in the weak Galerkin finite element space WG(P0, P0, RT0) . The WGFEM is used to approximate the spatial variables and the time discretization is made by the backward Euler method. For reaction–diffusion systems, stability analysis and error bounds for semi‐discrete and fully discrete schemes are proved. Accuracy and efficiency of the proposed method successfully tested on several numerical examples and obtained results satisfy the well‐known result that for small values of diffusion coefficient, the steady state solution converges to equilibrium point. Acquired numerical results asserted the efficiency of the proposed scheme.  相似文献   

12.
We apply the least‐squares finite element method with adaptive grid to nonlinear time‐dependent PDEs with shocks. The least‐squares finite element method is also used in applying the deformation method to generate the adaptive moving grids. The effectiveness of this method is demonstrated by solving a Burgers' equation with shocks. Computational results on uniform grids and adaptive grids are compared for the purpose of evaluation. The results show that the adaptive grids can capture the shock more sharply with significantly less computational time. For moving shock, the adaptive grid moves correctly with the shock. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

13.
We present an H1‐Galerkin mixed finite element method for a nonlinear parabolic equation, which models a compressible fluid flow process in subsurface porous media. The method possesses the advantages of mixed finite element methods while avoiding directly inverting the permeability tensor, which is important especially in a low permeability zone. We conducted theoretical analysis to study the existence and uniqueness of the numerical solutions of the scheme and prove an optimal‐order error estimate for the method. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

14.
A multilevel finite element method in space‐time for the two‐dimensional nonstationary Navier‐Stokes problem is considered. The method is a multi‐scale method in which the fully nonlinear Navier‐Stokes problem is only solved on a single coarsest space‐time mesh; subsequent approximations are generated on a succession of refined space‐time meshes by solving a linearized Navier‐Stokes problem about the solution on the previous level. The a priori estimates and error analysis are also presented for the J‐level finite element method. We demonstrate theoretically that for an appropriate choice of space and time mesh widths: hjh, kjk, j = 2, …, J, the J‐level finite element method in space‐time provides the same accuracy as the one‐level method in space‐time in which the fully nonlinear Navier‐Stokes problem is solved on a final finest space‐time mesh. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2005  相似文献   

15.
Carsten Carstensen  Hella Rabus 《PAMM》2008,8(1):10049-10052
The need to develop reliable and efficient adaptive algorithms using mixed finite element methods arises from various applications in fluid dynamics and computational continuum mechanics. In order to save degrees of freedom, not all but just some selected set of finite element domains are refined and hence the fundamental question of convergence requires a new mathematical argument as well as the question of optimality. We will present a new adaptive algorithm for mixed finite element methods to solve the model Poisson problem, for which optimal convergence can be proved. The a posteriori error control of mixed finite element methods dates back to Alonso (1996) Error estimators for a mixed method. and Carstensen (1997) A posteriori error estimate for the mixed finite element method. The error reduction and convergence for adaptive mixed finite element methods has already been proven by Carstensen and Hoppe (2006) Error Reduction and Convergence for an Adaptive Mixed Finite Element Method, Convergence analysis of an adaptive nonconforming finite element methods. Recently, Chen, Holst and Xu (2008) Convergence and Optimality of Adaptive Mixed Finite Element Methods. presented convergence and optimality for adaptive mixed finite element methods following arguments of Rob Stevenson for the conforming finite element method. Their algorithm reduces oscillations, before applying and a standard adaptive algorithm based on usual error estimation. The proposed algorithm does this in a natural way, by switching between the reduction of either the estimated error or oscillations. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
In this article, we investigate the application of pseudo‐transient‐continuation (PTC) schemes for the numerical solution of semilinear elliptic partial differential equations, with possible singular perturbations. We will outline a residual reduction analysis within the framework of general Hilbert spaces, and, subsequently, use the PTC‐methodology in the context of finite element discretizations of semilinear boundary value problems. Our approach combines both a prediction‐type PTC‐method (for infinite dimensional problems) and an adaptive finite element discretization (based on a robust a posteriori residual analysis), thereby leading to a fully adaptive PTC ‐Galerkin scheme. Numerical experiments underline the robustness and reliability of the proposed approach for different examples.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 2005–2022, 2017  相似文献   

17.
This paper is concerned with the structure of the singular and regular parts of the solution of time‐harmonic Maxwell's equations in polygonal plane domains and their effective numerical treatment. The asymptotic behaviour of the solution near corner points of the domain is studied by means of discrete Fourier transformation and it is proved that the solution of the boundary value problem does not belong locally to H2 when the boundary of the domain has non‐acute angles. A splitting of the solution into a regular part belonging to the space H2, and an explicitly described singular part is presented. For the numerical treatment of the boundary value problem, we propose a finite element discretization which combines local mesh grading and the singular field methods and derive a priori error estimates that show optimal convergence as known for the classical finite element method for problems with regular solutions. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
This article proposes and analyzes a multilevel stabilized finite volume method(FVM) for the three‐dimensional stationary Navier–Stokes equations approximated by the lowest equal‐order finite element pairs. The method combines the new stabilized FVM with the multilevel discretization under the assumption of the uniqueness condition. The multilevel stabilized FVM consists of solving the nonlinear problem on the coarsest mesh and then performs one Newton correction step on each subsequent mesh thus only solving one large linear systems. The error analysis shows that the multilevel‐stabilized FVM provides an approximate solution with the convergence rate of the same order as the usual stabilized finite element solution solving the stationary Navier–Stokes equations on a fine mesh for an appropriate choice of mesh widths: hjhj‐12, j = 1,…,J. Therefore, the multilevel stabilized FVM is more efficient than the standard one‐level‐stabilized FVM. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

19.
In this article, we propose a two‐level finite element method to analyze the approximate solutions of the stationary Navier‐Stokes equations based on a stabilized local projection. The local projection allows to circumvent the Babuska‐Brezzi condition by using equal‐order finite element pairs. The local projection can be used to stabilize high equal‐order finite element pairs. The proposed method combines the local projection stabilization method and the two‐level method under the assumption of the uniqueness condition. The two‐level method consists of solving a nonlinear equation on the coarse mesh and solving a linear equation on fine mesh. The nonlinear equation is solved by the one‐step Newtonian iteration method. In the rest of this article, we show the error analysis of the lowest equal‐order finite element pair and provide convergence rate of approximate solutions. Furthermore, the numerical illustrations coincide with the theoretical analysis expectations. From the view of computational time, the results show that the two‐level method is effective to solve the stationary Navier‐Stokes equations. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2011  相似文献   

20.
Multipoint flux approximation (MPFA) methods were introduced to solve control‐volume formulations on general grids. Although these methods are general in the sense that they may be applied to any grid, their convergence and monotonicity properties vary. We introduce a new MPFA method for quadrilateral grids termed the L‐method. This method seeks to minimize the number of entries in the flux stencils, while honoring uniform flow fields. The methodology is valid for general media. For homogeneous media and uniform grids in two dimensions, this method has four‐point flux stencils and seven‐point cell stencils, whereas the MPFA O‐methods have six‐point flux stencils and nine‐point cell stencils. The reduced stencil of the L‐method appears as a consequence of adapting the method to the closest neighboring cells, or equivalently, to the dominating principal direction of anisotropy. We have tested the convergence and monotonicity properties for this method and compared it with the O‐methods. For moderate grids, the convergence rates are the same, but for rough grids with large aspect ratios, the convergence of the O‐methods is lost, while the L‐method converges with a reduced convergence rate. Also, the L‐method has a larger monotonicity range than the O‐methods. For homogeneous media and uniform parallelogram grids, the matrix of coefficients is an M‐matrix whenever the method is monotone. For strongly nonmonotone cases, the oscillations observed for the O‐methods are almost removed for the L‐method. Instead, extrema on no‐flow boundaries are observed. These undesired solutions, which only occur for parameters not common in applications, should be avoided by requiring that the previously derived monotonicity conditions are satisfied. For local grid refinements, test runs indicate that the L‐method yields almost optimal solutions, and that the solution is considerably better than the solutions obtained by the O‐methods. The efficiency of the linear solver is in many cases better for the L‐method than for the O‐methods. This is due to lower condition number and a reduced number of entries in the matrix of coefficients. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号