首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The UV photopolymerization of trimethylolpropane triacrylate with a photoinitiator of 2‐ethylanthraquinone is monitored using the variation of resonant resistance of a quartz crystal resonator to investigate the polymerization kinetics. The roles of initiator concentration and irradiation time are experimentally examined, and it is found that two different kinetics are involved in the photopolymerization. The initiator radicals produced by the UV light proceed the polymerization as long as the monomer remains even after the UV illumination has stopped. The experimental results indicate that the photopolymerization has the first‐order kinetics at the first‐ and the zeroth‐order kinetics followed. With the high concentration of initiator the polymerization occurs in the first‐order kinetics only, and so does with long irradiation time. The polymerization constants of the first and zeroth‐order kinetics are estimated from monitoring monomer amounts at different polymerization conditions. The photopolymerization is characterized with the FTIR spectroscopy. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
The quartz crystal microbalance (QCM) method is applied to the measurement of CO2 sorption in glassy poly(ethylene terephthalate) (PET), poly(methyl methacrylate), and polysulfone. Polymer thin films in the thickness range of 350–550 nm are prepared by spin‐casting onto the quartz crystal devices. Sorption isotherms at temperatures below the glass transition are analyzed with the dual‐mode sorption model. As‐cast, quenched, and slow‐cooled thermal‐conditioning protocols yield consistent trends in the sorption level, namely, as‐cast > quenched > slow‐cooled. The sorption levels and model results for the quenched‐conditioned samples measured with QCM compare favorably with those reported from the pressure‐decay and gravimetric methods on thick films. With extended analysis of PET, the QCM technique is also useful for the exploration of the temperature dependence associated with gas sorption in glassy polymer systems. Measured heats of sorption and the collapse of the Langmuir component near the PET glass‐transition temperature agree with those reported previously. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2109–2118, 2003  相似文献   

3.
In‐line studies of the initial stages of shear‐induced coalescence in two‐phase polymer blends were carried out with a home‐built device combining a cone and plate rheometer and a fiber‐optic‐assisted fluorescence detection system. A blend of 90 wt % poly(2‐ethylhexyl methacrylate) (PEHMA) and 10 wt % poly(butyl methacrylate) (PBMA) was prepared by the casting of films onto a solid substrate from mixed aqueous latex dispersions of the two polymers. The dispersions were prepared via emulsion polymerization under conditions in which both components were formed as spherical particles with a very narrow size distribution. By using a 14:1 particle ratio of PEHMA to PBMA, we obtained films in which 120‐nm PBMA particles were surrounded by a PEHMA matrix. The blend contained phenanthrene‐labeled PBMA particles and anthracene‐labeled PBMA particles in a ratio of 4:1, whereas the PEHMA matrix polymer was unlabeled. We monitored the anthracene‐to‐phenanthrene fluorescence intensity ratio (I470/I360) as a measure of direct nonradiative energy transfer from phenanthrene to anthracene, whereas the blend was sheared at different shear rates and temperatures. Under no‐shear conditions, the results of in‐line experiments were in good agreement with the results of off‐line measurements of energy transfer by conventional techniques. In blends under shear, the two sets of experiments, in‐line and off‐line, did not agree with each other. The cause of this disagreement was associated with normal forces in the blend under shear that affected the optical path length and the relative intensities of the fluorescence signals of the phenanthrene and anthracene groups in the blend. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2302–2316, 2001  相似文献   

4.
Quartz crystal microbalance with dissipation (QCM-D) monitoring is a powerful tool used to sensitively examine the real-time responses of polymer films to external responses. For example, the technique is commonly used to monitor film growth, material adsorption, thin film swelling, and ion exchange. With its rapidly expanding use, this review is intended to introduce new users to the basic principles of QCM-D, along with practical challenges and remedies specific to polymer thin films. For both new and experienced users, specific case studies are highlighted including layer-by-layer assembly, electrochemical QCM-D, swelling, sensing, and biological application. Last, the review recommends future directions for research and areas of growth.  相似文献   

5.
Summary: The laser irradiation at 193 nm of a gaseous mixture of carbon disulfide and ethene induces the copolymerization of both compounds and affords the chemical vapour deposition of a C/S/H polymer, the composition of which indicates the reaction between two to three CS2 molecules and one C2H4 molecule. Polymer structure is interpreted on the basis of X‐ray photoelectron and FT‐IR spectra as consisting of >CS, >CC<,  CH2 CH2 , (CC)SnC4 − n,  C (CS) S ,  S (CS) S , and C S S C configurations. The gas‐phase copolymerization of carbon disulfide and ethene represents the first example of such a reaction between carbon disulfide and a common monomer.

Scheme showing the expected reaction of excited CS2 molecules with other CS2 molecules to form dimers, which then react with another CS2 molecule or add to ethene.  相似文献   


6.
Employing a quartz crystal microbalance (QCM) as a MHz-viscoelastic sensor requires extracting information from higher harmonics beyond the Sauerbrey limit, which can be problematic for rubbery polymer films that are highly dissipative because of the onset of anharmonic side bands and film resonance. Data analysis for QCM can frequently obscure the underlying physics or involve approximations that tend to break down at higher harmonics. In this study, modern computational tools are leveraged to solve a continuum physics model for the QCM's acoustic shear wave propagation through a polymer film with zero approximations, retaining the physical intuition of how the experimental signal connects to the shear modulus of the material. The resulting set of three coupled equations are solved numerically to fit experimental data for the resonance frequency Δfn and dissipation ΔΓn shifts as a function of harmonic number n, over an extended harmonic range approaching film resonance. This allows the frequency-dependent modulus of polymer films at MHz frequencies, modeled as linear on a log–log scale, to be determined for rubbery polybutadiene (PB) and polydimethylsiloxane (PDMS) films, showing excellent agreement with time–temperature shifted rheometry data from the literature.  相似文献   

7.
The quartz crystal microbalance/heat conduction calorimeter (QCM/HCC) is a versatile instrument coupling both gravimetric and calorimetric techniques. The QCM/HCC is used to probe vapor sorption in thin films. Three parameters are measured simultaneously as a thin film undergoes vapor sorption, namely: mass changes in the film (±10 ng), corresponding thermal effects upon vapor sorption (±100 nW), and motional resistance (±0.5Ω) changes within the film. A range of film thicknesses (0.75 to 8.5 μm) of the polymer, Tecoflex? are cast on QCMs and the interaction of each film with ethanol and water is determined. From the direct calorimetric measurements, sorption enthalpies (ΔsorptionH kJ/mol) are determined for the film–vapor interactions. Sorption isotherms are then analyzed for each film. The isotherms shown here generally display a linear Henry's Law dissolution relationship between the vapor pressure and the amount of vapor sorbed into the film. Motional resistance data provides a window to view viscoelastic effects of the polymer films upon vapor sorption. Motional resistance data are compared for ethanol sorption in a relatively thin (0.75 μm) and thicker (8.5 μm) Tecoflex? film. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3893–3906, 2004  相似文献   

8.
A structured broad‐band photonic film is fabricated by a novel method using multiple gradient UV‐induced polymerization in the presence of cholesteric liquid crystals (CLCs). Here, imprinting and broadening of the reflection band of chiral nematic mesophase cells are achieved via controlled UV polymerization. The intensity gradient of UV light is modified by the distance between UV lamp and sample cell, which affects the polymerization rate and leads to the formation of imprinted helical constructions with different pitches. In this study, a comparison of new design process with traditional UV polymerization process is carried out. After seven cycles of gradient UV polymerization, the imprinted photonic construction exhibited a broadened reflection band and Bragg reflection, even for isotropic materials. Because of this, the reflection bandwidth showed a 70% improvement. Additionally, two stacked imprinted cells with different pitches can reflect incident light with a bandwidth over the visible wavelength range of 480–680 nm. A broad‐band photonic polymer film can be imprinted using multiple gradient UV photopolymerization in the presence of CLCs. Forming a UV intensity gradient and controlling the rate of photopolymerization are key factors in broadening the reflection band. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017, 55, 1427–1434  相似文献   

9.
Brominated aromatic acrylates were found to polymerize rapidly upon exposure to UV light. Moreover, they are able to initiate the UV‐induced polymerization of acrylic formulations that do not contain a conventional photoinitiator. In contrast, the corresponding unbrominated homologues are not effective as initiators. Investigations by real‐time FTIR spectroscopy have shown that the addition of only 1 wt % of a brominated acrylate is sufficient for an efficient initiation. Fast photopolymerization is achieved even if irradiation is carried out at λ > 300 nm where most acrylates do not absorb. Short‐lived transients were studied by laser flash photolysis. The triplet was found to show low sensitivity to oxygen which is because of its very short lifetime. Bromine radicals split of from the acrylates were trapped with bromine ions from tetraethyl ammonium bromide and detected as Br. The resulting quantum yields for the formation of bromine radicals are in the range of up to 0.3. Quantum chemical modeling was carried out to establish a mechanism for the release of bromine radicals. Both bromine and bromophenyl radicals are able to initiate the polymerization reaction. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4905–4916, 2008  相似文献   

10.
The degree of supersaturation is an important measure for the operation of crystallization processes, because it is directly related to the control of crystal size distribution and shape. A conventional technique utilizing solution composition and temperature has a variety of problems caused from the measurement error and the handling of analyzing samples.A monitoring system of the supersaturation using a quartz crystal sensor is proposed here, and its performance is examined applying different manipulations of coolant temperature. The experimental outcome and photographic examination indicate that the measurements of resonant frequency and resistance of the sensor can be used for the prediction of the formation and growth of solid crystal from the crystallization process. The monitoring system eliminates the intrinsic error source of the conventional system to give the improved measurement and on-line application availability.  相似文献   

11.
A new visible light photoinitiating system (PIS) containing a linked dye‐coinitiator dyad and a nondissociative electron donor was evaluated and compared with unlinked three components systems. Our results show that in the physical mixture of the three component PIS, addition of the nondissociative donor decreased the Rp to a great extent, whereas in combination with the dyads an increase in Rp is observed. The results were explained based on faster intramolecular electron transfer in linked pairs and point out the importance of linked initiator in three‐component PIS for the first time. This system is the first example of three‐components system with a nondissociative donor that would be useful for long life coating formulation. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4325–4330  相似文献   

12.
A novel method used for the preparation of poly(N‐isopropylacrylamide) (PNIPAAm) films of varying crosslink density under homogeneous/heterogeneous conditions is described in this paper. Photopolymerization of the N‐isopropylacrylamide (NIPAAm) monomer in water (homogeneous at ~7°C and heterogeneous at ~40°C) or a mixture of water/ethanol (50:50, heterogeneous at ~7°C) was carried out using 1‐[4‐(2‐hydroxyethoxy)‐phenyl]‐2‐hydroxy‐2‐methyl‐1‐propane‐1‐one (hydrophilic) or 2‐hydroxy‐2‐methyl propiophenone (hydrophobic) photo‐initiator. In order to investigate the effect of temperature and crosslink density, polymerization was carried out at ~7°C [below lower critical soluble temperature (LCST)] and ~40°C (above LCST) using varying amounts of N,N′‐methylene bisacrylamide (BIS) ranging from 1–4 wt%. Degree of swelling (determined by optical microscopy), phase transition temperature [determined by differential scanning calorimetry (DSC)] as well as morphology (scanning electron microscopy) were found to be dependent on solvent system (homogeneous/heterogeneous), temperature of polymerization and crosslink density. Hydrogels prepared at ~7°C using hydrophobic photo‐initiator and water/ethanol (50:50) as solvent, showed much higher degree of swelling at all levels of crosslink density as compared to hydrogel prepared at ~7°C using hydrophilic photo‐initiator and water as solvent. Hydrogels were used for patterning which may find applications in microfluidic devices. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
The photoinitiated polymerization of 2-chloro-1,4-phenylene bis[4-[6-(acryloyloxy)hexyloxy]benzoate] (1M) was studied. The monomer 1M exhibited a broad nematic phase between 24.9 and 113.7 °C on a DSC cooling scan. It was oriented in its nematic phase at a substrate coated with polyimide and unidirectionally rubbed with a nylon cloth. During polymerization, the ordering of the liquid–crystal molecules was fixed, yielding a uniaxially crosslinked network. The clear liquid–crystal networks (LCNs) exhibited a birefringence between 0.14 and 0.19, depending on the polymerization temperature. Finally, a nonmesogenic diluent, tetra(ethylene glycol)diacrylate, was mixed with 1M, subsequently decreasing the birefringence of the obtained LCNs. The LCNs containing nonmesogenic diluent exhibited not only a smaller birefringence but also a weaker birefringence dispersion in the visible region. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3929–3935, 1999  相似文献   

14.
Cationic photopolymerization is a convenient in situ polymerization method for organic thin film preparation. In this work, the polymerization mechanisms is applied for highly viscous cross‐linking monomers, using tetra‐alkylepoxyporphyrin (TAEP) as a case study. By comparing the UV‐Vis spectra of the polymerized sample before and after the unreacted monomers have been dissolved, it is possible to estimate the polymerization yield. An IR spectrum of a reference thick film confirms full polymerization. Scanning fluorescence lifetime microscopy and AFM show the uniformity of the polymer. It was shown that photopolymerization is highly dependent on the substrate nature and requires at best case a 10 min illumination at 90 °C. Thermal polymerization of the same sample requires 10 min heating at 150 °C in dark. It was also shown that TAEP works as a self‐sensitizer for cationic photopolymerization. The proposed method is a mild and versatile technique for in situ preparation of thin polymeric films directly from chromophore monomers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6095–6103, 2009  相似文献   

15.
A kinetic model developed to investigate surface‐initiated photoiniferter‐mediated photopolymerization (SI‐PMP) and parameterized using experimental thickness data from SI‐PMP of methyl methacrylate is used to examine chain extension by reinitiation. Specifically, the effects of light intensity, concentration of an added deactivator, tetraethylthiuram disulfide (TED), and initial photoiniferter (PI) concentration on the reinitiation ability of surface‐tethered PMMA layers is examined in detail. The simulations show that while increases in [TED] and decreases in light intensity affect overall rates of PMMA layer growth in a similar fashion, their effect on reinitiation ability of PMMA layers is significantly different: reinitiation ability increases with increasing [TED] but it is not improved by decreases in light intensity. Simulations also suggest that polymer layers synthesized in the presence of TED have a greater tendency to form surface‐tethered block copolymers upon reinitiation compared with polymer layers synthesized without TED and at lower light intensity. While both [PI] and [TED] affect the reinitiation ability, the effect of [TED] on reinitiation ability is identical at a given [TED]/[PI] ratio for all PI and TED concentrations tested. These findings obtained from the rate‐based model are instrumental in delineating strategies for creating tethered block copolymer layers or mixed brushes by SI‐PMP. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1586–1593, 2010  相似文献   

16.
The interaction between cells and biomaterials has been mimicked using nylon microparticles as pseudo-cells and PLMA and PIBMA as biomaterial model acrylate polymers. The shift of fundamental resonance frequencies was negative for both polymers, indicating mass-coupling to the sensor surface. The shifts of the 3rd, 5th and 7th overtone frequencies were initially positive for both polymers, indicating a particle slip or wobbling on the surface. The QCM technique could discriminate between the two different polymers, showing increased interaction between microparticle and PLMA. The dissipation shift was positive for all overtones on both polymers, but again with faster and more prominent response for PLMA.  相似文献   

17.
The liquid, ceramic precursor monomer VL20 was copolymerized with a thiol monomer in a traditional radical thiol‐ene photopolymerization. Polymerization occurred via addition of the thiol functional group to the vinyl silazane functional group in a 1:1 ratio consistent with a step‐growth polymerization. Gelation occurred at a high conversion of functional groups (70%) consistent with an average molecular weight and functionality of 560 and 1.7, respectively, for VL20 monomers. Initiatorless photopolymerization of the thiol‐VL20 system also occurred upon irradiation at either 365 or 254 nm. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1752–1757, 2004  相似文献   

18.
A powerful new continuous process for the formation and use of donor/acceptor‐substituted carbenes is described. The safety profile of diazo group transfer on methyl phenylacetate was determined including kinetic studies in batch and in flow using in‐line IR analysis. Batch work‐up and liquid chromatography were circumvented by developing an optimized liquid/liquid flow separation method providing aryl diazoacetates in high purity. Fast screening of reaction conditions in flow with in‐line IR analysis allowed rapid reaction optimization. Finally, a multistep process of diazo group transfer, extraction, separation and subsequent diazo decomposition combined with multiple X?H insertion reactions was established.  相似文献   

19.
Many metal ions are spontaneously adsorbed onto a piezoelectric quartz crystal and change the oscillation frequency. The pH ranges in which the metal ions adsorbed were just below that of precipitate formation as the ‘hydroxides’; frequency changes caused by adsorption were not observed in these pH ranges where the ‘hydroxides’ formed. Cationic organic reagents, such as crystal violet and methylene blue, were also adsorbed on the piezoelectric quartz crystal but non-ionic and anionic organic compounds were not. These results showed that the crystal was negatively charged on the surface.  相似文献   

20.
When a mixture of liquid crystal (LC) and photo reactive monomer is irradiated by UV light, polymerization occurs and LC droplets form through phase separation, producing polymer dispersed LCs (PDLCs). Although size control of LC droplets and reduced amounts of LC in PDLC films are important in applications, precise size control of LC droplets at a low LC fraction has not yet been accomplished. In this study, the phase diagrams of the LC/initial monomer and the LC/polymer during polymerization were used to control LC droplet size at various LC fractions. Both the relative position of the sample in the initial phase diagram and the shift of the phase separation line during polymerization were shown to be important in determining the size of LC droplets. Our results are expected to provide a new strategy for precise size control of LC droplets especially at a low LC fraction range, which would be a great help for PDLC applications. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号