首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1‐Alkynes containing azobenzene mesogenic moieties [HC?C(CH2)9? O? ph? N?N? ph? O? R; R = ethyl ( 1 ), octyl ( 2 ), decyl ( 3 ), (S)‐2‐methylbutyl ( 4 ), or (S)‐1‐ethoxy‐1‐oxopropan‐2‐yl ( 5 ); ph = 1,4‐phenyl] were synthesized and polymerized in the presence of a Rh catalyst {(nbd)Rh+[B(C6H5)4]?; nbd = 2,5‐norbornadiene} to yield a series of liquid‐crystalline polymers in high yields (e.g., >75%). These polymers had moderate molecular weights (number‐average molecular weight ≥ 12,000), high cis contents in the main chain (up to 83%), good thermal stability, and good solubility in common organic solvents, such as tetrahydrofuran, chloroform, and dichloromethane. These polymers were thoroughly characterized by a combination of infrared, nuclear magnetic resonance, thermogravimetric analysis, differential scanning calorimetry, polarized optical microscopy, and two‐dimensional wide‐angle X‐ray diffraction techniques. The liquid‐crystalline behavior of these polymers was dependent on the tail group attached to the azobenzene structure. Poly‐ 1 , which had the shortest tail group, that is, an ethyl group, showed a smectic A mesophase, whereas poly‐ 2 , poly‐ 3 , and poly‐ 5 , which had longer or chiral tail groups, formed smectic C mesophases, and poly‐ 4 , which had another chiral group attached to the azobenzene structure, showed a chiral smectic C mesophase in both the heating and cooling processes. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4532–4545, 2006  相似文献   

2.
Mesogen jacketed liquid crystalline poly(1‐alkyne) and poly(1‐phenyl‐1‐alkyne) linked pendants of terphenyl mesogens with hexyloxy tails at the waist position (? {RC?C? [(CH2)3OOC‐terpheyl‐(OC6H13)2]}n? , where R?H, PHATP(OC6)2 ; R?C6H5, PPATP(OC6)2 ) were synthesized. The influences of structural variations on the thermal, mesomorphic, and luminescent properties were investigated. Polymerizations of all monomers are carried out by WCl6‐Ph4Sn catalysts successfully. The polymers are stable (Td ≥ 340 °C) and soluble in common solvents. The monomers and polymers show enantiotropic SmA phases in the heating and cooling processes, and the lateral side chains of the mesogenic units are perpendicular to the main chain. The “jacket effect” of chromophoric terphenyl core “shell” around the main chain also contributes to polymers with high photoluminescence, and the pendant‐to‐backbone energy transfer path is involved in the luminescence process of this polymers. In comparison with monosubstituted polyacetylene PHATP(OC6)2 , the disubstituted polyacetylene PPATP(OC6)2 shows better photoluminescence in both THF solution and film, and exhibited about 40 nm red‐shifted than PHATP(OC6)2 , indicating that the “jacket effect” of terphenyl mesogens forces poly(1‐phenyl‐1‐alkyne) backbone to extend in a more planar conformation with a better conjugation. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

3.
Triphenylene‐containing 1‐decynes with different alkyl chain lengths and their polymers are synthesized and the effects of the structural variables on their mesomorphic properties are investigated. The monomers [HC?C(CH2)8CO2C18H6 (OCmH2m+1)5; m = 4–9] are prepared by consecutive etherization, coupling, and esterification reactions. The monomers form columnar phases at room temperature. The polymerizations of the monomers are effected by [Rh(nbd)Cl]2, producing soluble polymers in high yields (up to 84%). The structures and properties of the polymers are characterized and evaluated by IR, NMR, TGA, DSC, POM, and XRD analyses. All the polymers are thermally stable, losing little of their weights when heated to 300 °C. The isotropization temperature of the polymers increases initially with the length of alkyl chain but decreases on further extension. Although the polymers with shorter and longer alkyl chain lengths adopt a homogeneous hexagonal columnar structure, those with intermediate ones form mesophases with mixed structures. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2960–2974, 2008  相似文献   

4.
Two novel high‐molecular weight functional polyacetylenes (PA) bearing oxadiazole group as a pendant, poly(2‐(4‐octoxyphenyl)‐5‐(4‐ethynylphenyl)‐1,3,4‐oxadiazole) ( P1 ) and poly(2‐(4′‐octoxyphenyl)‐5‐(4′‐propynyloxyphenyl)‐1,3,4‐oxadiazole) ( P2 ) were synthesized by [Rh(nbd)Cl]2‐Et3N catalysts. Both polymers were soluble in common organic solvents such as CHCl3 and tetrahydrofuran. Their structures and properties were characterized and evaluated with FTIR, NMR, UV, thermogravimetric analysis, GPC, optical‐limiting and nonlinear optical analyses, respectively. The results show that linkage of oxadiazole chromophore to PA main chain has improved the nonlinear optical (NLO) property of PA, and endowed PA with novel optical limiting properties and enhanced thermal stability. Simultaneously, the optical‐limiting and NLO properties of the polymers were sensitive to their molecular structures. P1 with oxadiazole directly incorporated into PA main chain as a pendant showed better performances and larger third‐order nonlinear optical susceptibility than P2 with oxadiazole incorporated into PA main chain via a spacer. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2072–2083, 2008  相似文献   

5.
The hyperbranched polytriazole (hb‐PTA) containing second‐order nonlinear optical chromophore was synthesized through “A2 + B3” approach based on “click reaction.” Its corresponding linear analogue (l‐PTA) was prepared for comparison. The hb‐PTA has better solubility in common organic solvents than the l‐PTA. Both the polymers exhibit good thermal stability with 5% weight loss temperatures over 260 °C. The poled film of hb‐PTA exhibits much higher second‐harmonic coefficient (96.8 pm/V) than that of l‐PTA (23.5 pm/V). The three‐dimensional spatial isolation effect resulting from the highly branched structure and the crosslinking of the terminal acetylene groups at moderate temperature play important roles in the enhancement of optical nonlinearity. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1140–1148, 2008  相似文献   

6.
A series of novel conjugated poly(aryleneethynylene)s (PAEs) co‐containing BODIPY have been synthesized and characterized, and their third‐order nonlinear optical properties were studied using the Z‐scan technique. Interestingly, by introducing the BODIPY skeleton into the PAE backbone, the polymers showed that their nonlinear optical properties were dependent on the BODIPY component. From poly‐4 to poly‐1, the third‐order nonlinear optical properties of the polymers enhanced regularly with the increase of the BODIPY component of the copolymers, indicating that the BODIPY component played decisive roles in enhancing the nonlinear optical properties. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7401–7410, 2008  相似文献   

7.
Polyacetylenes ( P1–P4 ) containing different stilbene groups, ? [(CH?C) ? Ph? CH?CH? Ph? R]n? (R?OCmH2m+1 (m = 4 ( P1 ), 10 ( P2 ), 16 ( P3 )), or NO2 ( P4 )) were designed and synthesized, respectively, using [Rh(nbd)Cl]2 as a catalyst. Their structures and properties were characterized and evaluated by FTIR, 1H‐NMR, 13C‐NMR, GPC, and UV, PL, respectively. The optical limiting and nonlinear optical properties were investigated by using a frequency doubled, Q‐switched, mode‐locked Continuum ns/ps Nd:YAG laser system and their optical limiting mechanism was discussed. It is surprising to see that the stilbene pendants endow the polyacetylenes with a high thermal stability (Td ≥ 270 °C), novel optical limiting properties and large third‐order nonlinear optical susceptibilities (up to 4.61 × 10?10 esu). The optical limiting mechanism is mainly originated from reverse saturable absorption of molecules. In addition, it is found that the polymer with electron accepted NO2 moiety exhibits better optical properties than that with electron donated alkoxy group because of larger π electron delocalization and dipolar effect. The strong interaction between stilbene pendants and the polyene main chain significantly results in red‐shift of fluorescence emitting peak. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4529–4541, 2008  相似文献   

8.
Structural and retrostructural analysis of chiral, nonracemic ( poly [(3,4,5)dm8G1‐1EN] ), and achiral ( poly[(3,4,5)12G1‐1EN] ) poly(1‐naphthylacetylene)s demonstrates new design principles for helical dendronized polyarylacetylenes. The oblate cylindrical dendronized polymers self‐organize in a c2mm centered rectangular columnar (Φr‐c) lattice. An all cis‐polyene backbone microstructure with very high cisoid character is introduced to rationalize features from small‐ and wide‐angle X‐ray diffraction experiments. More compact helical conformations are ideal for efficient communication or amplification of chirality over long distances. Peripheral chiral tails select a preferred helical screw sense of the polyene backbone. In solution, the preferred helical conformation persists over a wide temperature range. In bulk, the naphthyl moiety facilitates a longer correlation length for helical order compared to an analogous minidendritic poly(phenylacetylene). These attributes suggest that the naphthyl moiety may be better suited for expressing helical chirality in monolayer domains. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4974–4987, 2007  相似文献   

9.
The poly(N‐vinylcarbazole)‐grafted MWNTs (MWNT‐PVK) hybrid materials were synthesized in the presence of S‐1‐Dodecyl‐S′‐(α, α′‐dimethyl‐α″‐acetic acid) trithiocarbonate (DDAT)‐covalently functionalized multiwalled carbon nanotubes (MWNT‐DDAT) as reversible addition–fragmentation chain transfer (RAFT) agent. Incorporation of the PVK moieties onto the MWNTs surface can considerably improve the solubility and processability of MWNTs. For all MWNT‐PVK hybrid materials, they are soluble in some common organic solvents such as toluene, THF, chloroform, DMF and others. In contrast to the UV/Vis spectrum of DDAT‐PVK, which was synthesized by use of DDAT as RAFT agent under the same synthetic condition, in the visible region, the absorption spectrum of MWNT‐PVK exhibited a typical electronic absorption characteristics of solubilized carbon nanotubes, in which the absorbance decreases gradually in the range of 350–600 nm. At the same level of linear transmission the MWNT‐PVK with 79.2% PVK moieties in the material structure possesses best optical limiting performance in comparison with the other MWNT‐PVK composites, MWNTs and C60. The significant NLO responses manifest the MWNT‐PVK materials suitable candidate for viable optical limiting devices. Light scattering, originating from the thermal‐induced microplasmas and/or microbubbles, is responsible for the optical limiting. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3161–3168, 2010  相似文献   

10.
A chiral azobenzene‐containing N‐propargylamide monomer, that is, (R)‐2‐(4‐phenylazophenoxy)‐n‐prop‐2‐ynyl‐propionamide, was prepared and polymerized in the presence of a rhodium catalyst to yield an optically active polyacetylene. The 1H NMR analysis of the polymer indicated a predominant cis structure of the backbone (cis concentration = 80%); and the chiroptical property studies showed an enhanced optical rotatory power and a strong Cotton effect, indicating the formation of a secondary helical conformation. A reversible optical modulation of chiroptical properties of the polymer due to the reversible photoisomerization of the azobenzene was observed. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6047–6054, 2006  相似文献   

11.
Three new polythiophenes containing an azobenzene moiety in the side‐chain were synthesized and characterized. Two of them, which are slightly soluble in tetrahydrofuran to allow the preparation of thin films from solution casting, were used to investigate the photoinduced anisotropy arising from the photoisomerization of azobenzene in this type of polymer. The results show that, unlike other amorphous azobenzene polymers, only an extremely small anisotropy can be induced on excitation with an Ar+ laser at 488 nm in these azobenzene‐containing polythiophenes, and that this photoinduced anisotropy is observable only by heating the polymer to some temperatures below glass transition temperature. It is suggested that the inability for azobenzene polythiophenes to display a significant photoinduced anisotropy may be caused by some structural constraints and/or a severe interference from conjugated thiophene chains that absorb strongly in the visible region. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3445–3455, 2004  相似文献   

12.
2‐Phenoxyethyl acrylate (2‐PEA) was polymerized alone and in the presence of an azobenzene comonomer derived from Disperse Red‐1, N‐ethyl‐N‐(2‐hydroxyethyl)‐4‐(4‐nitrophenylazo)aniline (MDR‐1), by using the frontal polymerization technique. Two novel ionic liquids, recently synthesized by us, were used as initiators: tetrabutylphosphonium persulfate (TBPPS) and trihexyltetradecylphosphonium persulfate (TETDPPS). Even if their concentrations were smaller than those found when benzoyl peroxide and terbutylperoxy neodecanoate were used, these compounds gave rise to stable propagating polymerization fronts characterized by relatively low maximum temperatures and good velocities. Moreover, at variance to these latter, TBPPS and TETDPPS prevent bubble formation, thus allowing the use of the obtained materials in optical applications. The obtained polymers were characterized by infrared spectroscopy (FTIR), their thermal properties were determined by differential scanning calorimetry, and their optical properties were studied by absorption spectroscopy in the UV–vis region. Finally, the nonlinear optical (NLO) properties of the 2‐PEA/MDR‐1 copolymers obtained with TBPPS and TETDPPS were performed according to the Z‐Scan technique with prepared film samples. It has been proven that samples with higher MDR‐1 content (0.05 mol %) exhibited outstanding cubic NLO activity with negative NLO refractive coefficients around n2 = ?1.7 × 10?3 esu. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

13.
The 3‐ and 4‐aminophenylacetylenes protected by t‐butoxycarbonyl (t‐Boc) and 9‐fluorenylmethoxycarbonyl (Fmoc) groups ( 3a – 6a ) were synthesized and polymerized using [(nbd)RhCl]2 ( 1 ) and [(nbd)Rh+‐η6‐PhB?Ph3] ( 2 ) catalysts. The t‐Boc‐containing polymers [poly( 3a ) and poly( 4a )] were obtained in high yield (82–91%). Among the Fmoc‐protected monomers, the para‐derivative polymerized well [poly( 6a ); yield = 85–94%], whereas its meta‐substituted analogue did not afford high molecular weight polymer in good yield [poly( 5a ); yield = 10–15%]. The use of KN(SiMe3)2 as a cocatalyst in conjunction with 1 led to a dramatic increase in the molecular weight of the polymers. The acid‐ and base‐catalyzed removal of the t‐Boc and the Fmoc groups, respectively, generated primary amine‐containing polymers [poly( 3b )–poly( 6b )] which cannot be obtained directly by the polymerization of the corresponding monomers. The solubility characteristics of the polymers bearing protected amino groups were quite different from those of the unprotected ones, the former being soluble in polar solvents, whereas the latter displayed poor solubility even in polar protic or highly polar aprotic solvents. The attempts to accomplish the free‐standing membrane fabrication by solution casting were successful only for poly( 3a ), and an augmentation in the gas permeability and CO2/N2 permselectivity was discerned in comparison with the unsubstituted poly(phenylacetylene) and poly(mt‐butyldimethylsiloxyphenylacetylene). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1853–1863, 2009  相似文献   

14.
Azobenzene monomeric precursors bearing piperazine as donor moiety with different withdrawing groups and derived side chain polymethacrylates have been prepared and characterized. Monomers having terminal cyano or nitro groups, and the corresponding polymers, exhibited smectic A phases. Linear and nonlinear optical properties of every monomer and thin films of the cyano polymer ( pol‐PZ‐CN ) have been also studied. UV‐vis spectroscopy revealed out‐of‐plane orientation in the as prepared films, as confirmed by waveguide refractive index measurements. Moreover, absorption spectra indicated the presence of azo aggregates in these films. The initial molecular arrangement has been modified by applying thermal annealing within the mesophase range and UV‐blue irradiation. Although thermal annealing resulted in a significant amplification of the out‐of‐plane optical anisotropy due to thermotropic self‐organization of side chain azo moieties, irradiation with 440 nm light induced some disruption of aggregates. The nonlinear optical response of Corona poled films has been studied by second harmonic generation measurements, and the influence of the molecular arrangement on the nonlinear dij coefficients has been analyzed. The more efficient poling corresponded to preirradiated films. In any case, a noticeable degree of polar order (70% of the initial d33 value) remained for several months after the poling in films kept at RT. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 232–242, 2010  相似文献   

15.
Three kinds of chiral saccharide‐containing liquid crystalline (LC) acetylenic monomers were prepared by click reaction between 2‐azidoethyl‐2,3,4,6‐tetraacetyl‐β‐D ‐galactopyranoside and 1‐biphenylacetylene 4‐alkynyloxybenzoate. The obtained monomers were polymerized by WCl6‐Ph4Sn to form three side‐chain LC polyacetylenes containing 1‐[2‐(2,3,4,6‐tetraacetyl‐β‐D ‐galactopyranos‐1‐yl)‐ethyl]‐1H‐[1,2,3]‐triazol‐4′‐biphenyl 4‐alkynyloxybenzoate side groups. All monomers and polymers show a chiral smectic A phase. Self‐assembled hiearchical superstructures of the chiral saccharide‐containing LCs and LCPs in solution state were studied by field‐emission scanning electron microscopy. Because of the LC behavior, the LC molecules exhibit a high segregation strength for phase separation in dilute solution (THF/H2O = 1:9 v/v). The self‐assembled morphology of LC monomers was dependent upon the alkynyloxy chain length. Increasing the alkynyloxy chain length caused the self‐assembled morphology to change from a platelet‐like texture ( LC‐6 ) to helical twists morphology ( LC‐11 and LC‐12 ). Furthermore, the helical twist morphological structure can be aligned on the polyimide rubbed glass substrate to form two‐dimensional ordered helical patterns. In contrast to LC monomers, the LCP‐11 self‐assembled into much more complicate morphologies, including nanospheres and helical nanofibers. These nanofibers are evolved from the helical cables ornamented with entwining nanofibers upon natural evaporation of the solution in a mixture with a THF/methanol ratio of 3:7. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6596–6611, 2009  相似文献   

16.
Novel acetylenic monomers containing Schiff‐base and amino groups, (S)‐N‐(4‐ethynylbenzylidene)‐1‐phenylethanamine ( 1a ), (R)‐N‐(4‐ethynylbenzylidene)‐1‐phenylethanamine ( 1b ), N‐(4‐ethynylbenzylidene)‐1‐phenylethanamine ( 1c ), (R)‐N‐(4‐ethynylbenzyl)‐1‐phenylethanamine ( 1d ), and (R)‐N‐(4‐ethynylbenzyl)‐1‐phenylethanamine ( 1e ) were synthesized and polymerized with [(nbd)RhCl]2/Et3N catalyst to afford the corresponding polymers 2a ‐ e with moderate molecular weights (Mn = 9000–60,000) in high yields (85–97%). All the polymers were soluble in common organic solvents including toluene, CHCl3, CH2Cl2, THF, and DMF. Large optical rotations and strong CD signals demonstrated that 2a , 2b , 2d , and 2e take helical structures with a predominantly one‐handed screw sense. The effects of solvents and temperature revealed that these polymers took dynamic helical structure based on the steric effect of side groups. The CD patterns of 2d and 2e containing free amino moieties were completely inverted by the addition of benzoic acid. Upon further addition of NaOH, the CD pattern returned to the original one, indicating the reversible conformational change of these polymers according to pH. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5248–5256  相似文献   

17.
In this article, a facile route was designed to prepare four new hyperbranched poly(arylene‐ethynylene)s containing azo‐chromophore moieties through one‐pot “A2+B3” approach via simple Sonogashira coupling reaction. The polymers were all soluble in organic solvents and demonstrated good nonlinear optical (NLO) properties, because of the three‐dimensional spatial isolation effect of these hyperbranched polymers. Due to the different B3‐type comonomer, the self‐assembly effect of pentafluoroaromatic in the interior of these polymers were different, leading to the different trends of the NLO activities. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

18.
Three types of bi‐functionalized copolymers ( P1FAz , P2FAz , and P3FAz ) with different numbers of fluorene units and an azobenzene unit were synthesized and characterized using UV–vis and polarized absorption spectroanalysis. The trans‐cis photoisomerization was conformed under 400 nm light irradiation for all copolymers in chloroform. However, in the film state, only the transcis photoisomerization occurred by mono‐fluorene attached copolymer poly[(9,9‐di‐n‐octylfluorenyl‐2,7‐diyl)‐alt‐4,4′‐azobenzene)] ( P1FAz ). Photo‐induced alignment was achieved using the P1FAz film after irradiation with linear polarized 400 nm light and subsequent annealing at 60 °C. Surface orientation of a spin‐coating film of poly(9,9‐didodecylfluorene) ( F12 ) was achieved using the photo‐induced alignment layer of the P1FAz film after annealing at 90 °C. The photo‐induced alignment layer of P1FAz has potential application to the surface orientation technique for appropriate polymers, which will be useful for the fabrication of optoelectronics devices. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
A disubstituted polyacetylene consisting of a poly(diphenylacetylene) backbone and a 1,2,3,4,5‐pentaphenylsilole (SiC4Ph5) pendant, that is, ? {(C6H5) C?C [C6H4O(CH2)3C?CSiC4Ph5]}n? (PS3DPA), was synthesized, and its light emission from both the backbone and the pendant was evaluated. The polymerization of C6H5C?CC6H4O(CH2)3C?CSiC4Ph5 with two ethynyl groups was effected with WCl6–Ph4Sn as the catalyst. The structure and properties of PS3DPA were characterized and evaluated by IR, UV, NMR, thermogravimetric analysis, differential scanning calorimetry, photoluminescence, and electroluminescence analyses. The ethynyl group of the diphenylacetylene moiety was polymerized exclusively, giving a soluble PS3DPA. The chloroform solution of PS3DPA showed a backbone emission that peaked at 522 nm, whereas the silole pendant was nonradiative at room temperature. The polymer did not show the aggregation‐induced emission phenomenon, probably because the silole clusters were difficult to form when the polymer chains aggregated because of the very high rigidity of the main chain. Intramolecular rotations of the phenyl groups of the silole moieties were responsible for the nonradiative decay of the silole chromophore. The intramolecular rotations, however, could be largely restricted in a cooling process of the polymer solution, showing cooling‐enhanced emission. The silole emission became dominant at lower temperatures. A multilayer electroluminescence device based on PS3DPA emitted a green light that peaked at 512 nm. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2487–2498, 2006  相似文献   

20.
A series of random copolymers poly(3‐ethynylthiophene)‐copoly(2‐(4‐decyloxyphenyl)‐5‐(4‐ethynylphenyl)‐1,3,4‐oxadiazole) with different oxadiazole content ( P2 – P4 ) and homopolymer poly(3‐ethynylthiophene) ( P1 ) as well as poly(2‐(4‐decyloxyphenyl)‐5‐(4‐ethynylphenyl)‐1,3,4‐oxadiazole) ( P5 ) were prepared. The copolymers ( P2 – P4 ) are completely soluble in common organic solvents. The structures and properties of all polymers were characterized and evaluated by FTIR, 1H NMR, 13C NMR, TGA, UV, PL, GPC, and nonlinear optical (NLO) analyses. The incorporation of diaryl‐oxadiazole into polyacetylene‐containing thiophene significantly endows copolymers with higher thermal stability, which may origin from the synergetic effect of the “jacket effect” of diaryl‐oxadiazole units and the effect of retarding or eliminating a few 6π‐electrocycliaztion proceeds of oxadiazole‐containing polyacetylene due to the hindrance of thiophene units. When the copolymer ( P3 ) posses more regular alternating thiophene pendants and oxadiazole pendants arrangement along the polymer backbone, it shows good thermal stability (Td up to 388 °C) and larger third‐order nonlinear optical susceptibility (χ(3) up to 11.0 × 10?11 esu). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号