首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Original explicit modulation equations are determined for cnoidalwaves of the Korteweg-deVries (KdV)–Burgers equation.This formal asymptotic analysis is used to demonstrate thatthere is no single partial differential equation for the leading-ordermean velocity. The technique of Reynolds averaging is also employedto determine an equation for the mean velocity with the familiarclosure problem being encountered. The Reynolds-averaged KdV–Burgersequation is shown to be a counterexample to the existence ofa closure associated with a convective nonlinearity.  相似文献   

2.
We consider the problem of convective diffusion of water-soluble substances for industrial and household wastewater seepage. The solution of this problem reduces to solving a boundary-value problem of mathematical physics described by a parabolic partial differential equation of second order with variable boundary conditions. An analytical solution of the problem is obtained in the form of a functional series.Translated from Vychislitel'naya i Prikladnaya Matematika, No. 57, pp. 80–85, 1985.  相似文献   

3.
In this article, the Ritz‐Galerkin method in Bernstein polynomial basis is implemented to give an approximate solution of a hyperbolic partial differential equation with an integral condition. We will deal here with a type of nonlocal boundary value problem, that is, the solution of a hyperbolic partial differential equation with a nonlocal boundary specification. The nonlocal conditions arise mainly when the data on the boundary cannot be measured directly. The properties of Bernstein polynomial and Ritz‐Galerkin method are first presented, then Ritz‐Galerkin method is used to reduce the given hyperbolic partial differential equation to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique presented in this article. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

4.
An innovative approach to the approximate solution of stochastic partial differential equations in groundwater flow is presented. The method uses a formulation of the Ito's lemma in Hilbert spaces to derive partial differential equations satisfying the moments of the solution process. Since the moments equations are deterministic, they could be solved by any analytical or numerical method existing in the literature. This permits the analysis and solution of stochastic partial differential equations occurring in two-dimensional or three-dimensional domains of any geometrical shape. The method is tested for the first time in the present paper through a practical application in a sandy phreatic aquifer at the Chalk River Nuclear Laboratories, Ontario, Canada. The equation solved is the two-dimensional LaPlace equation with a dynamic, randomly perturbed, free surface boundary condition. The moments equations are derived and solved by using the boundary integral equation method. A comparison is made with a previous analytical solution obtained by applying the randomly forced one-dimensional Boussinesq equation, and some observations on modeling procedures are given.  相似文献   

5.
The time-dependent differential equations of elasticity for 2D quasicrystals with general structure of anisotropy (dodecagonal, octagonal, decagonal, pentagonal, hexagonal, triclinic) are considered in the paper. These equations are written in the form of a vector partial differential equation of the second order with symmetric matrix coefficients. The fundamental solution (matrix) is defined for this vector partial differential equation. A new method of the numerical computation of values of the fundamental solution is suggested. This method consists of the following: the Fourier transform with respect to space variables is applied to vector equation for the fundamental solution. The obtained vector ordinary differential equation has matrix coefficients depending on Fourier parameters. Using the matrix computations a solution of the vector ordinary differential equation is numerically computed. Finally, applying the inverse Fourier transform numerically we find the values of the fundamental solution. Computational examples confirm the robustness of the suggested method for 2D quasicrystals with arbitrary type of anisotropy.  相似文献   

6.
In this paper, we propose a GL method for solving the ordinary and the partial differential equation in mathematical physics and chemics and engineering. These equations govern the acustic, heat, electromagnetic, elastic, plastic, flow, and quantum etc. macro and micro wave field in time domain and frequency domain. The space domain of the differential equation is infinite domain which includes a finite inhomogeneous domain. The inhomogeneous domain is divided into finite sub domains. We present the solution of the differential equation as an explicit recursive sum of the integrals in the inhomogeneous sub domains. Actualy, we propose an explicit representation of the inhomogeneous parameter nonlinear inversion. The analytical solution of the equation in the infinite homogeneous domain is called as an initial global field. The global field is updated by local scattering field successively subdomaln by subdomain. Once all subdomains are scattered and the updating process is finished in all the sub domains, the solution of the equation is obtained. We call our method as Global and Local field method, in short , GL method. It is different from FEM method, the GL method directly assemble inverse matrix and gets solution. There is no big matrix equation needs to solve in the GL method. There is no needed artificial boundary and no absorption boundary condition for infinite domain in the GL method. We proved several theorems on relationships between the field solution and Green's function that is the theoretical base of our GL method. The numerical discretization of the GL method is presented. We proved that the numerical solution of the GL method convergence to the exact solution when the size of the sub domain is going to zero. The error estimation of the GL method for solving wave equation is presented. The simulations show that the GL method is accurate, fast, and stable for solving elliptic, parabolic, and hyperbolic equations. The GL method has advantages and wide applications in the 3D electromagnetic (EM)  相似文献   

7.
A solution to an inverse problem involving noncharacteristic Cauchy conditions for a one-dimensional parabolic partial differential equation is presented which extends previous work in which the effects of a first-order convective term were ignored. The new solution involves a series expansion in Laguerre polynomials in time with spatial coefficients expressed in terms of a new set of special functions. These special functions are studied and many new properties are derived including a set of five term recurrence relations. The paper concludes with a theoretical study of conditions under which the inverse problem is well-posed.  相似文献   

8.
Some physical problems in science and engineering are modelled by the parabolic partial differential equations with nonlocal boundary specifications. In this paper, a numerical method which employs the Bernstein polynomials basis is implemented to give the approximate solution of a parabolic partial differential equation with boundary integral conditions. The properties of Bernstein polynomials, and the operational matrices for integration, differentiation and the product are introduced and are utilized to reduce the solution of the given parabolic partial differential equation to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the new technique.  相似文献   

9.
A method for removing the domain or volume integral arising in boundary integral formulations for linear inhomogeneous partial differential equations is presented. The technique removes the integral by considering a particular solution to the homogeneous partial differential equation which approximates the inhomogeneity in terms of radial basis functions. The remainder of the solution will then satisfy a homogeneous partial differential equation and hence lead to an integral equation with only boundary contributions. Some results for the inhomogeneous Poisson equation and for linear elastostatics with known body forces are presented.  相似文献   

10.
In this paper, we study the numerical solution to time‐fractional partial differential equations with variable coefficients that involve temporal Caputo derivative. A spectral method based on Gegenbauer polynomials is taken for approximating the solution of the given time‐fractional partial differential equation in time and a collocation method in space. The suggested method reduces this type of equation to the solution of a linear algebraic system. Finally, some numerical examples are presented to illustrate the efficiency and accuracy of the proposed method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
如何求解偏微分方程,已经成为各个领域内非常重视的课题.在再生核空间中,给出了变系数偏微分方程的级数形式精确解,为了数值计算,给出了一个迭代方法,并证明了迭代方法的收敛性.数值算例表明本文方法是有效的而且具有良好的实用性.  相似文献   

12.
The problem of almost everywhere stability of a nonlinear autonomous ordinary differential equation is studied using a linear transfer operator framework. The infinitesimal generator of a linear transfer operator (Perron-Frobenius) is used to provide stability conditions of an autonomous ordinary differential equation. It is shown that almost everywhere uniform stability of a nonlinear differential equation, is equivalent to the existence of a non-negative solution for a steady state advection type linear partial differential equation. We refer to this non-negative solution, verifying almost everywhere global stability, as Lyapunov density. A numerical method using finite element techniques is used for the computation of Lyapunov density.  相似文献   

13.
In this project, we investigate the stochastic Burgers' equation with multiplicative space-time white noise on an unbounded spatial domain. We give a random field solution to this equation by defining a process via a kind of Feynman–Kac representation which solves a stochastic partial differential equation such that its Hopf–Cole transformation solves Burgers' equation. Finally, we obtain Hölder regularity and moment estimates for the solution to Burgers' equation.  相似文献   

14.
Gegenbauer wavelets operational matrices play an important role in the numeric solution of differential equations. In this study, operational matrices of rth integration of Gegenbauer wavelets are derived and used to obtain an approximate solution of the nonlinear extended Fisher-Kolmogorov (EFK) equation in two-space dimension. Nonlinear EFK equation is converted into the linear partial differential equation by quasilinearization technique. Numerical examples have shown that present method is convergent even in the case of a small number of grid points. The results of the presented method are in a good agreement with the results in literature.  相似文献   

15.
We consider transumtations for a class of problems in partial differential equations where the underlying equation, involving two assignable parameters, is an associated ordinary differential equation with an irregular singular point. An integral formula for the solution of this associated problem, valid for negative values of a timelike variable t, permits relating the solution of the problems in partial differential equations to be bounded or slow groth solutions of generalized heat problems. Applications of the formulas are made to Cauchy and boundary type problems.  相似文献   

16.
The problem of pricing European options based on multiple assets with transaction costs is considered. These options include, for example, quality options and options on the minimum of two or more risky assets. The value of these options is the solution of a nonlinear parabolic partial differential equation subject to a final condition given by the payoff function associated with the option. A computationally efficient method to solve this final-value problem is proposed. This method is based on an asymptotic expansion of the required solution with respect to the parameters related to the transaction costs followed by the numerical solution of the linear partial differential equations obtained at each order in perturbation theory. The numerical solution of these linear problems involves an implicit finite-difference scheme for the parabolic equation and the use of the fast Fourier sine transform to solve the resulting elliptic problems. Numerical results obtained on test problems with the method proposed here are shown and discussed.  相似文献   

17.
为了求解物理化学生物材料和金融中的微分方程,提出了一种总体(Global)和局部(Local)场方法.微分方程的求解区域可以是有限域,无限域,或具曲面边界的部分无限域.其无限域包括有限有界不均匀介质区域.其不均匀介质区域被分划为若干子区域之和.在这含非均匀介质的无限区域,将微分方程的解显式地表示为在若干非均匀介质子区域上和局部子曲面的积分的递归和.把正反算的非线性关系递归地显式化.在无限均匀区域,微分方程的解析解被称为初始总体场.微分方程解的总体场相继地被各个非均匀介质子区域的局部散射场所修正.这种修正过程是一个子域接着另个子域逐步相继地进行的.一旦所有非均匀介质子区域被散射扫描和有限步更新过程全部完成后,微分方程的解就获得了.称其为总体和局部场的方法,简称为GL方法.GL方法完全地不同于有限元及有限差方法,GL方法直接地逐子域地组装逆矩阵而获得解.GL方法无需求解大型矩阵方程,它克服了有限元大型矩阵解的困难.用有限元及有限差方法求解无限域上的微分方程时,人为边界及其上的吸收边界条件是必需的和困难的,人为边界上的吸收边界条件的不精确的反射会降低解的精确度和毁坏反算过程.GL方法又克服了有限元和有限差方法的人为边界的困难.GL方法既不需要任何人为边界又不需要任何吸收边界条件就可以子域接子域逐步精确地求解无限域上的微分方程.有限元和有限差方法都仅仅是数值的方法,GL方法将解析解和数值方法相容地结合起来.提出和证明了三角的格林函数积分方程公式.证明了当子域的直经趋于零时,波动方程的GL方法的数值解收敛于精确解.GL方法解波动方程的误差估计也获得了.求解椭圆型,抛物线型,双曲线型方程的GL模拟计算结果显示出我们的GL方法具有准确,快速,稳定的许多优点.GL方法可以是有网,无网和半网算法.GL方法可广泛应用在三维电磁场,三维弹塑性力学场,地震波场,声波场,流场,量子场等方面.上述三维电磁场等应用领域的GL方法的软件已经由作者研制和发展了。  相似文献   

18.
We investigate the Cauchy problem for a nonlinear parabolic partial differential equation of Hamilton–Jacobi–Bellman type and prove some regularity results, such as Lipschitz continuity and semiconcavity, for its unique viscosity solution. Our method is based on the possibility of representing such a solution as the value function of the associated stochastic optimal control problem. The main feature of our result is the fact that the solution is shown to be jointly regular in space and time without any strong ellipticity assumption on the Hamilton–Jacobi–Bellman equation.  相似文献   

19.
In this paper the boundary integral expression for a one-dimensional wave equation with homogeneous boundary conditions is developed. This is done using the time dependent fundamental solution of the corresponding hyperbolic partial differential equation. The integral expression developed is a generalized function with the same form as the well-known D'Alembert formula. The derivatives of the solution and some useful invariants on the characteristics of the partial differential equation are also calculated.The boundary element method is applied to find the numerical solution. The results show excellent agreement with analytical solutions.A multi-step procedure for large time steps which can be used in the boundary element method is also described.In addition, the way in which boundary conditions are introduced during the time dependent process is explained in detail. In the Appendix the main properties of Dirac's delta function and the Heaviside unit step function are described.  相似文献   

20.
Numerical methods for partial differential equation have experienced steady developments in the past several decades.Most of the remaining challenges fall into two categories,both of which are associated with the curse of the dimensionality.In the first category,the func-tion of the partial differential equation is high dimensional,with examples from many-body quantum mechanics,molecular dynamics,to kinetic equations and control problems.In the second category,the objective of the interest is the high dimensional map from the parameters of the equation to the solution or vice versa,with examples such as inverse problems and un-certainty quantifications.The curse of the dimensionality has been the bottleneck for further breakthroughs in the numerical solution of partial differential equation problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号