首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
This paper reports an XPS study of impurities in a 100‐nm‐thick AlN film grown by metalorganic chemical vapor deposition (MOCVD) under low pressure on the n‐type 6H‐SiC substrate. The Si‐doped AlN film was characterized by the X‐ray photoelectron spectroscopy (XPS) in a high vacuum system, which reveals the content distribution and chemical states of impurities along depth. The XPS analysis of AlN film before and after argon‐ion etching indicates that there always exist Ga, O and C contaminations in AlN film. Especially, O contamination on the AlN film surface is mostly introduced during the growth of AlN layer by MOCVD. Meanwhile, most of O atoms bind with Al or Ga in Al―O and Ga―O chemical states. In particular, the Ga atoms in AlN film are always in two chemical states, i.e. Ga―Ga bond and Ga―O bond, which demonstrates that the aggregation of Ga is accompanying with AlN growth. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
The morphology of ionic aggregates in semicrystalline Zn‐ and Na‐neutralized poly(ethylene‐ran‐methacrylic acid) (EMAA) ionomer blown films has been explored with scanning transmission electron microscopy (STEM) and small angle X‐ray scattering. The ionic aggregates of Zn‐EMAA are spherical, monodisperse, and uniformly distributed in as‐extruded pellets and blown films prepared at low and high blow‐up ratio. Thus, although the biaxial stresses of film blowing are sufficient to alter the PE superstructure, the ionic aggregates in Zn‐EMAA are unaffected. In contrast, the morphology of Na‐EMAA as detected by STEM changes from featureless in the as‐extruded pellets to a heterogeneous distribution of Na‐rich aggregates in the blown films. This transformation in Na‐EMAA morphology is consistent with our earlier study of quiescent annealing, suggesting that the morphological change is the result of thermal processing rather than the biaxial stresses of film blowing. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3549–3554, 2005  相似文献   

3.
TiO2 film containing 20 at% Ta (TaTiO2 film) was sol‐gel coated on NiTi alloy, and polydopamine film was used to immobilize arginine molecules onto the TaTiO2 film surface to improve hemocompatibility of NiTi alloy. X‐ray photoelectron spectroscopy analysis indicated that polydopamine film was formed and then arginine was immobilized onto the surface of TaTiO2‐coated sample. Contact angle measurement showed that the polydopamine film and the arginine molecule layer decreased surface energy and interface tension of the TaTiO2‐coated NiTi sample. The hemocompatibility tests demonstrated that immobilization of arginine molecules improved anti‐thrombogenic activity and anti‐aggregating function of the TaTiO2‐coated NiTi sample. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
X‐ray diffraction measurements were performed using synchrotron radiation at the SPring‐8 facility and electrochemical techniques to investigate the effect of polishing methods and storage conditions on the crystal structure of air‐formed oxide films and anodic oxide films formed on highly pure aluminum. Storage in an N2 environment hinders local film breakdown during anodizing, and it was established that the X‐ray diffraction measurements showed the presence of a γ‐Al2O3 in the anodic oxide film formed on mechanically polished (MP) specimens. Formation of γ‐Al2O3 during anodizing was inhibited by electropolishing because of the removal of the work‐hardened layer that was formed on the MP by electro‐polishing. The X‐ray diffraction results do not show clear differences in the influence of the polishing method on the crystal structure of air formed oxide film. This is due to the very fast oxidation rate of the air‐formed oxide film and very long storage times for the X‐ray measurements. The anodic oxide film formed on aluminum, which has a very flat surface, shows color and the color depended on grain orientation. The electrochemical impedance of the MP specimen is slightly lower than that of the mechanically and then electrochemically polished specimen at the middle frequency range. This impedance difference may be due to formation of γ‐Al2O3 in the amorphous anodic oxide film and the thickness of the film. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Silicon powder is vulnerable to oxidation due to its high surface activity. The as‐prepared Si powder is characterized by X‐ray photoelectron spectroscopy spectra coupled with an oxygen nitrogen analyzer, revealing that oxygen impurities mainly consist of Si oxides but with a small amount of free oxygen. The stable oxide films can deteriorate the properties of sintered materials since they cannot be removed during sintering process. The cleaning of these oxides by a single‐HF solution is not straightforward and efficient due to the large surface tension. To remove the oxygen, a more efficient way with the addition of ethanol to a HF solution has been proposed. The addition of a moderate percent of ethanol can decrease the water contact angle and then improve the cleaning efficiency. Importantly, the resulting Si powder possesses good dispersity, uniformity and fluidity. However, excess hydrofluoric acid suppresses oxide removal. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
A quantitative angle‐resolved XPS analysis was carried out of the carbonaceous films resulting from the derivatization under mild thermal activation of nearly flat, terraced, dihydrogen‐terminated, 1 × 1 (100) Si with 1‐octene or 1‐octyne. The analysis of the C 1s signal gave evidence for the presence of carbon in carbide configuration (Si? C bonds) at the substrate–film interface, in addition to the alkanic carbon and adventitious oxidized carbon (C? O bonds) produced by the oxidizing impurities flawing the reaction. Assuming the surface as uniformly covered, the analysis showed that for both reactants the films were closely packed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
Unambiguous structural elucidation of active pharmaceutical ingredients (API) impurities is a particularly challenging necessity of pharmaceutical development, particularly if the impurities are low level (0.1% level). In many cases, this requires acquiring high‐quality NMR data on a pure sample of each impurity. High‐quality, high signal‐to‐noise (S/N) one‐ and two‐dimensional NMR data can be obtained using liquid chromatography‐solid phase extraction‐cryoflow NMR (LC‐SPE‐cryoflow NMR) with a combination of semi‐preparative column for separation and mother liquor as a source of concentrated impurities. These NMR data, in conjunction with mass spectrometry data, allowed for quick and unambiguous structural elucidations of four impurities found at low level in the crystallized API but found at appreciable levels in the mother liquor that was used as the source for these impurities. These data show that semi‐preparative columns can be used at lower than ideal flow rates to facilitate trapping of HPLC components for LC‐SPE‐cryoflow NMR analysis without compromising chromatographic resolution. Also, despite the complex chromatography encountered with the use of mother liquor as a source of impurities, acceptably pure analytes were obtained for acquiring NMR data for unambiguous structure elucidations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Vapor‐phase aldol condensation of n‐butyraldehyde to 2‐ethyl‐2‐hexenal was studied at 1 atm and 150~ 300°C in a fixed‐bed, integral‐flow reactor by using NaX, KX, γ‐Al2O3 and Na/NaOH/γ‐Al2CO3 catalysts. Ion exchange of NaX zeolite with potassium acetate solution results in a decrease of crystallinity and apparent lowering of surface area, whereas the basic strength is enhanced. Treatment of γ‐Al2O3 with NaOH and Na causes a large decrease of the surface area but strong enhancement of the catalyst basicity. The catalytic activity on the basis of unit surface area is in the order Na/NaOH/γ‐Al2O3 < KXU < KXW < NaX >γ‐Al2O3, in accordance with the relative catalyst basic strength. The molar ratio of trimeric to dimeric products increases with increasing the reaction temperature and the catalyst basic strength except for Na/NaOH/γ‐Al2O3. Very high selectivity of 2‐ethyl‐2‐hexenal (>98.5%) was observed for reactions over NaX zeolite at 150°C. Based on the FT‐IR and the catalytic results, the reaction paths are proposed as follows: self‐aldol condensation of n‐butyraldehyde, followed by dehydration produces 2‐ethyl‐2‐hexenal, which then reacts with n‐butyraldehyde and successively dehydrates to 2,4‐diethyl‐2,4‐octadienal and 1,3,5‐triethylbenzene. For the reaction over NaX, the calculated Arrhenius frequency factor and activation energy are 314 mol/g·h and 32.6 kJ/mol, respectively.  相似文献   

9.
A novel polysiloxane softener bearing N‐cyclohexyl‐γ‐aminopropyl side groups (ASO‐702) is synthesized by copolymerization of octamethylcyclotetrasiloxane with N‐cyclohexyl‐γ‐aminopropyl methyldimethoxylsilane and hexamethyldisiloxane. Chemical structure and film morphology of the synthesized polysiloxane are characterized and investigated by IR, 1H NMR, 13C NMR, SEM and atomic force microscope (AFM). The results of the experiment indicate that ASO‐702 can form a hydrophobic film on both a cotton fiber and a silicon‐wafer surface. At scales > 100 nm, the ASO‐702 shows a relative smooth‐resin film on the treated fabric/fiber surface. But as the observation rule decreases to 2 nm, the molecular scale, the ASO‐702 film exhibits an inhomogeneous structure and uneven morphology in its AFM images. There are many low or high peaks in ASO‐702 topography. Consequently in 2 µm2 scanning field, the root mean square roughness of ASO‐702 film is 0.246 nm, which is 3.05 times rougher as compared with that of polydimethylsiloxane (PDMS) film. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
A liquid‐crystalline (LC) phenylterthiophene derivative, which exhibited an ordered smectic phase at room temperature, was purified by vacuum sublimation under a flow of nitrogen. During the sublimation process, thin plates with sizes of 1 mm grew on the surface of the vacuum tube. The crystals exhibited the same X‐ray diffraction patterns as the ordered smectic phase of the LC state that was formed through a conventional recrystallization process by using organic solvents. Because of the removal of chemical impurities, the hole mobility in the ordered smectic phase of the vacuum‐grown thin plates increased to 1.2×10?1 cm2 V?1 s?1 at room temperature, whereas that of the LC precipitates was 7×10?2 cm2 V?1 s?1. The hole mobility in the ordered smectic phase of the vacuum‐sublimated sample was temperature‐independent between 400 and 220 K. The electric‐field dependence of the hole mobility was also very small within this temperature range. The temperature dependence of hole mobility was well‐described by the Hoesterey–Letson model. The hole‐transport characteristics indicate that band‐like conduction affected by the localized states, rather than a charge‐carrier‐hopping mechanism, is a valid mechanism for hole transport in an ordered smectic phase.  相似文献   

11.
The X‐ray‐induced sample damage during mono XPS analysis of an oxygen‐plasma‐oxidized and subsequently wet‐chemically reduced poly(propylene) film was investigated as a showcase for plasma‐modified or plasma‐deposited samples. By doing this, the degradation index approach as introduced by Beamson and Briggs in the Scienta ESCA300 high‐resolution XPS database of organic polymers has been adopted. As to be expected, the sample degrades by loosing oxygen as revealed by observation of decreasing O/C and C OR/Csum ratios. However, the X‐ray degradation indices are definitely higher than those of conventional reference polymers. Moreover, the C OR/Csum degradation index is significantly higher in comparison with one obtained for the O/C ratio. In that context, there is no difference between the plasma sample and a conventional poly(vinyl alcohol) polymer. It is concluded that for reliable quantitative surface chemical analysis, the quality of spectra in terms of acquisition times must be optimized aimed to a minimization of X‐ray degradation. Finally, it is proposed to describe the photon flux of an X‐ray gun in an XPS experiment, which defines the degradation rate at the end, by using the sample current simply measured with a carefully grounded sputter‐cleaned reference silver sample. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Unintentionally formed nanocrystalline graphene (nc‐G) can act as a useful seed for the large‐area synthesis of a hexagonal boron nitride (h‐BN) thin film with an atomically flat surface that is comparable to that of exfoliated single‐crystal h‐BN. A wafer‐scale dielectric h‐BN thin film was successfully synthesized on a bare sapphire substrate by assistance of nc‐G, which prevented structural deformations in a chemical vapor deposition process. The growth mechanism of this nc‐G‐tailored h‐BN thin film was systematically analyzed. This approach provides a novel method for preparing high‐quality two‐dimensional materials on a large surface.  相似文献   

13.
Sorbtion of some impurities from aqueous solutions by polymer complex poly(vinylalcohol) with poly(acrylamide) grafted copolymers (PVA‐PAAN) was studied by means of spectrophotometry and steady‐state fluorescence methods. The experiments showed that the PVA‐PAAN films effectively sorbs impurities molecules of average benzene ring from water. Simultaneously, the processes of polymer films dissolving in water take place. The thermal annealing (with the help of special methods) PVA‐PAAN film gives a possibility to obtain non‐dissolving polymer films which possess high sorbtion ability. Such films are proposed to be used as the sensors with optical response.  相似文献   

14.
The volatile chemical constituents in complex mixtures can be analyzed using gas chromatography with mass spectrometry. This analysis allows the tentative identification of diverse impurities of an illicit methamphetamine sample. The acquired two‐dimensional data of liquid–liquid extraction was resolved by multivariate curve resolution alternating curve resolution to elucidate the embedded peaks effectively. This is the first report on the application of a curve resolution approach for chromatogram fingerprinting to identify particularly the embedded impurities of a drug of abuse. Indeed, the strong and broad peak of methamphetamine makes identifying the underlying peaks problematic and even impossible. Mathematical separation instead of conventional chromatographic approaches was performed in a way that trace components embedded in methamphetamine peak were successfully resolved. Comprehensive analysis of the chromatogram, using multivariate curve resolution, resulted in elution profiles and mass spectra for each pure compound. Impurities such as benzaldehyde, benzyl alcohol, benzene, propenyl methyl ketone, benzyl methyl ketone, amphetamine, N‐benzyl‐2‐methylaziridine, phenethylamine, N ,N ,α‐trimethylamine, phenethylamine, N ,α,α‐trimethylmethamphetamine, N‐acetylmethamphetamine, N‐formylmethamphetamine, and other chemicals were identified. A route‐specific impurity, N‐benzyl‐2‐methylaziridine, indicating a synthesis route based on ephedrine/pseudoephedrine was identified. Moreover, this is the first report on the detection of impurities such as phenethylamine, N ,α,α‐trimethylamine (a structurally related impurity), and clonitazene (as an adulterant) in an illicit methamphetamine sample.  相似文献   

15.
Exploiting a superhydrophobic surface is very significant due to its excellent water repellency which has many practical applications in various fields. In this work, the cobalt incorporated amorphous carbon‐based (Co/a‐C:H) film was prepared successfully on Si substrate via a simple 1‐step electrochemical deposition where electrochemical deposition technology was using cobalt (II) acetylacetonate methanol solution as electrolyte under high voltage, atmospheric pressure, and low temperature. Surprisingly, the as‐prepared film showed a superior superhydrophobic surface with a water contact angle of 153 ± 1° and a sliding angle of 7.6° without any further modification of low surface energy materials. Especially, the tape adhesive, corrosion resistance, and self‐cleaning tests demonstrated that the as‐prepared carbon‐based film could possess fairly well adhesion, superior anti‐corrosion resistance, and self‐cleaning ability, respectively. It indicated that the superhydrophobic Co/a‐C:H film might have potential promising applications in the field of anti‐fouling, anti‐corrosion, and drag resistance, such as the above‐deck structures on icebreaker vessels, ship hulls, and offshore wind turbine blades.  相似文献   

16.
Electrochemically up‐regulated surface‐enhanced Raman spectroscopy (E‐SERS) effectively increases Raman signal intensities. However, the instrumental requirements and the conventional measurement conditions in an electrolyte cell have hampered its application in fast and on‐site detection. To circumvent the inconveniences of E‐SERS, we propose a self‐energizing substrate that provides electrical potential by converting film deformation from a finger press into stored electrical energy. The substrate combines an energy conversion film and a SERS‐active Ag nanowire layer. A composite film prepared from a piezoelectric polymer matrix and surface‐engineered rGO that simultaneously presents high permittivity and low dielectric loss is the key component herein. Using our substrate, increased E‐SERS signals up to 10 times from a variety of molecules were obtained in the open air. Various tests on real‐life sample surfaces demonstrated the potentials of the substrate in fast on‐site detection.  相似文献   

17.
The mechanical and electrical properties of the phosphor‐doped nano‐silicon film (nc‐Si:H) prepared by the plasma‐enhanced chemical vapor deposition (PECVD) method under electric field have been studied by Tribolab system, which is equipped with nano‐electrical contact resistance (ECR) tool. During indentation, different voltages and loads were applied. The topography of the sample surface was studied by atomic force microscopy (AFM). The experimental results show that the roughness of the film is 5.69 nm; the electric current was measured through the sample/indenter tip with different loads at a fixed voltage, and it increased nonlinearly during the indentation. The maximum current value depth was shallower than the maximum depth of each indent due to the plasticity of the film. When the loading speed is increased to 250 µN/s, the microcrack occurred on the film; the hardness (H) and elastic modulus (E) changed with the voltage applied both in open circuit and in short circuit case, which resulted in different values of H/E rate from 0.082 to 0.096. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Three new degradation impurities of bupropion were characterized through high performance liquid chromatography coupled to photodiode array detection and to time‐of‐flight mass spectrometry. Bupropion was subjected to the ICH prescribed stress conditions. It degraded to seven impurities (I–VII) in alkaline hydrolytic conditions which were optimally resolved on an XTerra C18 column (250 × 4.6 mm, 5 µm) with a ternary mobile phase comprising ammonium formate (20 mm , pH 4.0), methanol and acetonitrile (75:10:15, v/v). The degradation impurities (III–V and VII) were characterized on the basis of mass fragmentation pattern of drug, accurate mass spectral and photodiode array data of the drug and degradation impurities. Compound V was found to be a known degradation impurity [1‐hydroxy‐1‐(3‐chlorophenyl)propan‐2‐one], whereas III, IV and VII were characterized as 2‐hydroxy‐2‐(3′‐chlorophenyl)‐3,5,5‐trimethylmorpholine, (2,4,4‐trimethyl‐1,3‐oxazolidin‐2‐yl)(3‐chlorophenyl)‐methanone and 2‐(3′‐chlorophenyl)‐3,5,5‐trimethylmorphol‐2‐ene, respectively. Compound III was a known metabolite of the drug. This additional information on the degradation impurities can help in the development of a new stability‐indicating assay method to monitor the stability of the drug product during its shelf‐life as well as in development of a drug product with increased shelf‐life. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
In this work, clay‐Na particles are used as the adsorbent for the solid‐phase extraction of acidic compounds. The novel sorbent under study is based on high‐specific surface area, cation‐exchange capacity designed specifically to offer ion‐exchange properties with the goal being to selectively extract a group of acidic compounds. The effects of the extraction parameters including extraction elution solvent, sample volume and pH. In optimum conditions, the repeatability for one fiber (= 3), expressed as % relative standard deviation, was between 0.3 and 4.3% for the acid compounds. The detection limits for the studied acidic compounds were between 0.1–0.6 μg/L. The developed method offers the advantages of being simple to use and having a low cost of equipment.  相似文献   

20.
An HPLC separation method with triethylammonium acetate mobile phase additive developed for the analysis of impurities in polysulphonated azo dyes provides good separation selectivity and compatibility with electrospray ionisation (ESI) mass spectrometry. The negative‐ion ESI mass spectra containing only peaks of deprotonated molecules [M–H] for monosulphonic acids, [M–xH]x, and sodiated adducts [M–(x + y)H + yNa]x for polysulphonic acids allow easy molecular mass determination of unknown impurities. Based on the knowledge of the molecular masses and of the fragment ions in the MS/MS spectra, probable structures of trace impurities in commercial dye samples are proposed. To assist in the interpretation of the mass spectra of complex polysulphonated azodyes, additional information can be obtained after chemical reduction of azodyes to aromatic amines. The structures of the non‐sulphonated reduction products can be determined by reversed‐phase HPLC/MS with positive‐ion atmospheric pressure chemical ionisation and of the sulphonated products by ion‐pairing HPLC/MS with negative‐ion ESI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号