首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The chair and boat conformers for a series of derivatives of 1,4‐phosphasilacyclohexane 1‐oxides have been calculated at the B3LYP/6‐311+G** level of theory in the gas phase and taking into account the effect of solvent polarity using the IEF‐PCM model. The stability of the boat conformers containing pentacoordinate silicon due to formation of the P?O→Si intramolecular coordination bond depends on the environment of the phosphorus atom and polarity of the solvent, and the strength of the transannular bond depends also on the nature of the substituents at the silicon atom. The highly polar boat conformers are strongly stabilized in the DMSO solution. NBO analysis showed the importance of the σ(C? Si) → σ*(H3C? N) hyperconjugative interaction in the two H3C? N? C? Si fragments of the ring favoring the formation of the pentacoordinate silicon atom. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

2.
α,α‐Dibromotoluene 1 was found to be polymerized by the reaction with excess Mg to give poly(phenylmethylene)s 2 , whose main chains were partially dehydrogenated to carbon–carbon double bonds (C?C). The C?Cs in 2 can be brominated by treatment with Br2. The polymerization mechanism was presumed to include the formation of Grignard reagents of various species with benzylic C? Br bonds and the nucleophilic attacks of the Grignard reagents to various compounds with benzylic C? Br bonds. Copolymerization of 1 with dichlorodimethylsilane successfully proceeded. Mg/Cu‐mediated copolycondensation of 1 with 1,6‐dibromohexane proceeded to give polymers that have similar compositions to those of random copolymers of ethylene and styrene. © 2006Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5661–5671, 2006  相似文献   

3.
The tribological properties of Silicon‐containing diamond‐like‐carbon (Si‐DLC) films, deposited by magnetron sputtering Si target in methane/argon atmosphere, were studied in comparison with diamond‐like‐carbon (DLC) films. The DLC films disappeared because of the oxidation in the air at 500 °C, whereas the Si‐DLC films still remained, implying that the addition of Si improved significantly the thermal stability of DLC films. Retarded hydrogen release from DLC film at high temperature and silicon oxide on the surface might have contributed to lower friction coefficient of the Si‐DLC films both after annealing treatment and in situ high‐temperature environment. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
The reactions of alkyn‐1‐yl(vinyl)silanes R2Si[C?C‐Si(H)Me2]CH?CH2 [R = Me (1a), Ph (1b)], Me2Si[C?C‐Si(Br)Me2]CH?CH2 (2a), and of alkyn‐1‐yl(allyl)silanes R2Si[C?C‐Si(H)Me2]CH2CH?CH2 (R = Me (3a), R = Ph (3b)] with 9‐borabicyclo[3.3.1]nonane in a 1:1 ratio afford in high yield the 1‐silacyclopent‐2‐ene derivatives 4a, b and 5a, and the 1‐silacyclohex‐2‐ene derivatives 6a, b, respectively, all of which bear a functionally substituted silyl group in 2‐position and the boryl group in 3‐position. This is the result of selective intermolecular 1,2‐hydroboration of the vinyl or allyl group, followed by intramolecular 1,1‐organoboration of the alkynyl group. In the cases of 4a, b, potential electron‐deficient Si? H? B bridges are absent or extremely weak, whereas in 6a,b the existence of Si? H? B bridges is evident from the NMR spectroscopic data (1H, 11B, 13C and 29Si NMR). The molecular structure of 4b was determined by X‐ray analysis. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
The reaction of alkyn‐1‐yl(chloro)(methyl)vinyl‐ and alkyn‐1‐yl(chloro)(phenyl)‐vinylsilane with 9‐borabicyclo[3.3.1]nonane (9‐BBN) afforded selectively 1‐silacyclopent‐2‐ene derivatives containing a Si? Cl function, as a result of consecutive 1,2‐hydroboration and 1,1‐organoboration. Protodeborylation with acetic acid left the Si? Cl functions in various 1‐silacyclopent‐2‐enes untouched, whereas acetic acid in the presence of dipropylamine led to conversion of the Si? Cl into the Si? OAc function. New starting materials and all products were characterized in solution by multinuclear NMR spectroscopy (1H, 11B, 13C and 29Si NMR), and the molecular structures of two 1‐silacyclopent‐2‐ene derivatives were determined by X‐ray analysis. The gas phase geometries of 1‐silacyclopent‐2‐enes were optimized by DFT calculations [B3LYP/6‐311 + G(d,p) level of theory], found to be in reasonable agreement with the results of the crystal structure determination, and NMR parameters were calculated at the same level of theory. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Crystals of hexa‐tert‐butyldisilane, C24H54Si2, undergo a reversible phase transition at 179 (2) K. The space group changes from Ibca (high temperature) to Pbca (low temperature), but the lattice constants a, b and c do not change significantly during the phase transition. The crystallographic twofold axis of the molecule in the high‐temperature phase is replaced by a noncrystallographic twofold axis in the low‐temperature phase. The angle between the two axes is 2.36 (4)°. The centre of the molecule undergoes a translation of 0.123 (1) Å during the phase transition, but the conformation angles of the molecule remain unchanged. Between the two tri‐tert‐butylsilyl subunits there are six short repulsive intramolecular C—H...H—C contacts, with H...H distances between 2.02 and 2.04 Å, resulting in a significant lengthening of the Si—Si and Si—C bonds. The Si—Si bond length is 2.6863 (5) Å and the Si—C bond lengths are between 1.9860 (14) and 1.9933 (14) Å. Torsion angles about the Si—Si and Si—C bonds deviate by approximately 15° from the values expected for staggered conformations due to intramolecular steric H...H repulsions. A new polymorph is reported for the crystal structure of 1,1,2,2‐tetra‐tert‐butyl‐1,2‐diphenyldisilane, C28H46Si2. It has two independent molecules with rather similar conformations. The Si—Si bond lengths are 2.4869 (8) and 2.4944 (8) Å. The C—Si—Si—C torsion angles deviate by between −3.4 (1) and −18.5 (1)° from the values expected for a staggered conformation. These deviations result from steric interactions. Four Si—C(t‐Bu) bonds are almost staggered, while the other four Si—C(t‐Bu) bonds are intermediate between a staggered and an eclipsed conformation. The latter Si—C(t‐Bu) bonds are about 0.019 (2) Å longer than the staggered Si—C(t‐Bu) bonds.  相似文献   

7.
The trisilanol 1,3,5‐(HOi‐Bu2Si)3C6H3 ( 7 ), prepared in three steps from 1,3,5‐tribromobenzene via the intermediates 1,3,5‐(Hi‐Bu2Si)3C6H3 ( 8 ) and 1,3,5‐(Cli‐Bu2Si)3C6H3 ( 9 ) forms an equimolar complex with trans‐bis(4‐pyridyl)ethylene (bpe), 7 ·bpe, whose structure was investigated by X‐ray crystallography. The hydrogen‐bonded network features a number of SiO? H(H)Si and SiO? H hydrogen bridges. Evidence was found for cooperative strengthening within the sequential hydrogen bonds. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
Hydrogen Bonds with Cyanide Ions? The Structures of 1,3‐Diisopropyl‐4,5‐dimethylimidazolium Cyanide and 1‐Isopropyl‐3,4,5‐trimethylimidazolium Cyanide 1,3‐Diisopropyl‐4,5‐dimethylimidazolium cyanide ( 2a ) and 1‐isopropyl‐3,4,5‐trimethylimidazolium cyanide ( 2b ) are obtained from the reaction of the corresponding 2,3‐dihydrodimethylimidazol‐2‐ylidenes ( 1 ) and hydrogen cyanide in excellent yield. Their crystal structure analyses reveal the presence of ion pairs linked by hydrogen bonds. The crystal structure analysis of 2a reveals a near colinear orientation of the C(1)‐H bond axis and the cyanide ion while in 2b this orientation is perpendicular. In both cases, the interionic distances are in the expected range for hydrogen bonds. Ab‐initio calculations of the total energy of the salts 2 indicate small differences in energy between the colinear and perpendicular orientation of the ions as well as between the colinear C‐H···C‐N and C‐H···N‐C orientations. The comparison of calculated and measured 13C and 15N NMR chemical shifts does not allow the distinction between the possible orientations.  相似文献   

9.
The reaction of 1‐silyl‐1‐borylalkenes with alkyn‐1‐yltin compounds affords borol‐2‐enes, organometallic‐substituted allenes, mixtures thereof or even more complex mixtures with buta‐1,3‐dienes, depending on the third substituent at the C?C bond (Bu or Ph), on the number of Si? Cl functions (two or three) and the nature of the alkyn‐1‐yltin compound. Six new borol‐2‐enes were isolated in pure state, and two of them were characterized by X‐ray structural analysis. The solution‐state structures of all major products were clearly established by multinuclear magnetic resonance methods (1H, 11B, 13C, 29Si, 119Sn NMR). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
The reactions of the 1,2‐diselenolato‐1,2‐dicarba‐closo‐dodecaborane(12) dianion 1 with diorganoelement(IV) dichlorides (Ph2CCl2, Me2SiCl2, Ph2SiCl2, Me2SnCl2, Ph2SnCl2) gave novel five‐member heterocycles along with other products. The molecular structures of the five‐member rings containing CPh2 ( 2 ) and SnPh2 ( 9 ) moieties between the selenium atoms were determined by X‐ray analyses. In the case of the chlorosilanes, the analogous five‐member ring containing the SiPh2 unit ( 4 ) could be identified in mixtures. The expected reaction was accompanied by rearrangement leading to formation of another five‐member ring 6 containing the Ph2Si? Se? Se moiety. Oxidative addition of the five‐member heterocycles containing tin ( 7, 9 ) to ethene‐bis(triphenylphosphane)platinum(0) gave at low temperature the bis(triphenylphosphane)platinum(II) complexes 12 and 13 , where the Pt(PPh3)2 fragment had been inserted into one of the Sn? Se bonds. Extensive decomposition of these complexes was observed above ? 20 °C. The proposed solution‐state structures of the new compounds are supported by multinuclear magnetic resonance data (1H, 11B, 13C, 29Si, 31P, 77Se, 119Sn and 195Pt NMR). Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
In a stringent and near oxygen‐free environment, Si?H surfaces were introduced to a trifluoroalkyne, an alcohol‐derivatized alkyne, as well as an equal mixture of both alkynes at a temperature of 130 °C. Contact angle measurements, high‐resolution X‐ray photoelectron spectroscopy (XPS), and angle‐resolved XPS were performed to examine the system. Si?H surfaces were found to have a strong preference towards the formation of Si?O?C rather than Si?C bonds when the alcohol and alkyne reactivities were compared.  相似文献   

12.
The modification of flat semiconductor surfaces with nanoscale materials has been the subject of considerable interest. This paper provides detailed structural examinations of gold nanoparticles covalently immobilized onto hydrogen‐terminated silicon surfaces by a convenient thermal hydrosilylation to form Si? C bonds. Gold nanoparticles stabilized by ω‐alkene‐1‐thiols with different alkyl chain lengths (C3, C6, and C11), with average diameters of 2–3 nm and a narrow size distribution were used. The thermal hydrosilylation reactions of these nanoparticles with hydrogen‐terminated Si(111) surfaces were carried out in toluene at various conditions under N2. The obtained modified surfaces were observed by high‐resolution scanning electron microscopy (HR‐SEM). The obtained images indicate considerable changes in morphology with reaction time, reaction temperature, as well as the length of the stabilizing ω‐alkene‐1‐thiol molecules. These surfaces are stable and can be stored under ambient conditions for several weeks without measurable decomposition. It was also found that the aggregation of immobilized particles on a silicon surface occurred at high temperature (> 100 °C). Precise XPS measurements of modified surfaces were carried out by using a Au–S ligand‐exchange technique. The spectrum clearly showed the existence of Si? C bonds. Cross‐sectional HR‐TEM images also directly indicate that the particles were covalently attached to the silicon surface through Si? C bonds.  相似文献   

13.
Six silicate‐crosslinked oligodimethylsiloxane thin films were prepared by the phosphoric acid (1 mol %) catalyzed condensation of α,ω‐bis(hydroxy)oligodimethylsiloxane (P) and tetrakis(hydroxydimethylsiloxy)silane (Q). Other acid catalysts were evaluated. P and Q were prepared by the Pd‐catalyzed oxidation of the corresponding Si? H compounds with water. The starting materials were characterized by IR and 1H, 13C, and 29Si NMR. A thermal cure was achieved with H3PO4 in 24 h and with poly(phosphoric acid) in 3 h at 110–120 °C. Dynamic mechanical analysis was used to determine the glass‐transition temperatures and to evaluate the mechanical properties of the films. Their thermal stabilities (≥300 °C) in air and N2 were determined by thermogravimetric analysis. Small amounts of non‐crosslinked P were recovered from the films by Soxhlet extractions with CH2Cl2 and analyzed by IR, gel permeation chromatography, and 29Si NMR. The crosslink densities were evaluated by the CH2Cl2 absorption capacities of the films. The surface properties of the films were determined by static and dynamic contact‐angle measurements. Electrochemical impedance spectroscopy was carried out to evaluate the corrosion‐protective properties of the coatings on mild steel as a function of the exposure time to 0.5 N NaCl. The biofoul‐release properties of the films were evaluated with sporelings from mature Ulva linza plants and barnacles. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2237–2247, 2006  相似文献   

14.
The molecular structure of the title tricyclic compound, C17H21NO4, which is the immediate precursor of a potent synthetic inhibitor {Lek157: sodium (8S,9R)‐10‐[(E)‐ethyl­idene]‐4‐methoxy‐11‐oxo‐1‐aza­tri­cyclo­[7.2.0.03,8]­undec‐2‐ene‐2‐carboxyl­ate} with remarkable potency, provides experimental evidence for the previously modelled relative position of the fused cyclo­hexyl ring and the carbonyl group of the β‐lactam ring, which takes part in the formation of the initial tetrahedral acyl–enzyme complex. In this hydro­phobic mol­ecule, the overall geometry is influenced by C—H?O intramolecular hydrogen bonds [3.046 (4) and 3.538 (6) Å, with corresponding normalized H?O distances of 2.30 and 2.46 Å], whereas the mol­ecules are interconnected through intermolecular C—H?O hydrogen bonds [3.335 (4)–3.575 (5) Å].  相似文献   

15.
The title compound, C21H37NO2, is a new amphiphilic pyrrole with a long hydro­carbon chain, which will be used as a precursor for the synthesis of Langmuir–Blodgett films of porphyrins. Molecules related by an inversion centre are joined head‐to‐head into dimers by strong N—H?O hydrogen bonds. The dimers pack in the structure with their carbon chains parallel to one another, thereby forming alternating layers of carbon chains and pyrrole heads. The structure is further stabilized by two weak C—H?π intermolecular interactions, thereby saturating the hydrogen‐bonding capability of the aromatic π‐electron clouds.  相似文献   

16.
The gas permeability and n‐butane solubility in glassy poly(1‐trimethylgermyl‐1‐propyne) (PTMGP) are reported. As synthesized, the PTMGP product contains two fractions: (1) one that is insoluble in toluene and soluble only in carbon disulfide (the toluene‐insoluble polymer) and (2) one that is soluble in both toluene and carbon disulfide (the toluene‐soluble polymer). In as‐cast films, the gas permeability and n‐butane solubility are higher in films prepared from the toluene‐soluble polymer (particularly in those films cast from toluene) than in films prepared from the toluene‐insoluble polymer and increase to a maximum in both fractions after methanol conditioning. For example, in as‐cast films prepared from carbon disulfide, the oxygen permeability at 35 °C is 330 × 10?10 cm3 (STP) cm/(cm2 s cmHg) for the toluene‐soluble polymer and 73 × 10?10 cm3 (STP) cm/(cm2 s cmHg) for the toluene‐insoluble polymer. After these films are conditioned in methanol, the oxygen permeability increases to 5200 × 10?10 cm3 (STP) cm/(cm2 s cmHg) for the toluene‐soluble polymer and 6200 × 10?10 cm3 (STP) cm/(cm2 s cmHg) for the toluene‐insoluble polymer. The rankings of the fractional free volume and nonequilibrium excess free volume in the various PTMGP films are consistent with the measured gas permeability and n‐butane solubility values. Methanol conditioning increases gas permeability and n‐butane solubility of as‐cast PTMGP films, regardless of the polymer fraction type and casting solvent used, and minimizes the permeability and solubility differences between the various films (i.e., the permeability and solubility values of all conditioned PTMGP films are similar). © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2228–2236, 2002  相似文献   

17.
The reaction of di(alkyn‐1‐yl)vinylsilanes R1(H2C═CH)Si(C≡C―R)2 (R1 = Me ( 1 ), Ph ( 2 ); R = Bu (a), Ph (b), Me2HSi (c)) at 25°C with 1 equiv. of 9‐borabicyclo[3.3.1]nonane (9‐BBN) affords 1‐silacyclopent‐2‐ene derivatives ( 3a , 3b , 3c , 4a , 4b ), bearing one Si―C≡C―R function readily available for further transformations. These compounds are formed by consecutive 1,2‐hydroboration followed by intramolecular 1,1‐carboboration. Treated with a further equivalent of 9‐BBN in benzene they are converted at relatively high temperature (80–100°C) into 1‐alkenyl‐1‐silacyclopent‐2‐ene derivatives ( 5a , 5b 6a , 6b ) as a result of 1,2‐hydroboration of the Si―C≡C―R function. Protodeborylation of the 9‐BBN‐substituted 1‐silacyclopent‐2‐ene derivatives 3 , 4 , 5 , 6 , using acetic acid in excess, proceeds smoothly to give the novel 1‐silacyclopent‐2‐ene ( 7 , 8 , 9 , 10 ). The solution‐state structural assignment of all new compounds, i.e. di(alkyn‐1‐yl)vinylsilanes and 1‐silacyclopent‐2‐ene derivatives, was carried out using multinuclear magnetic resonance techniques (1H, 13C, 11B, 29Si NMR). The gas phase structures of some examples were calculated and optimized by density functional theory methods (B3LYP/6‐311+G/(d,p) level of theory), and 29Si NMR parameters were calculated (chemical shifts δ29Si and coupling constants nJ(29Si,13C)). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
The inverse‐micellar preparation of Si nanoparticles (Nps) was improved by utilizing sodium naphthalide. The Si Nps were subsequently functionalized with 4‐vinylbenzoic acid for their attachment onto TiO2 films of dye‐sensitized solar cells (DSSCs). The average diameter of the COOH‐functionalized Si (Si? COOH) Nps was 4.6(±1.7) nm. Depth profiling by secondary‐ion mass spectrometry revealed that the Si Nps were uniformly attached onto the TiO2 films. The number of RuII dye molecules adsorbed onto a TiO2 film that was treated with the Si? COOH Nps was 42 % higher than that on the untreated TiO2 film. As a result, DSSCs that incorporated the Si? COOH Nps exhibited higher short‐circuit photocurrent density and an overall energy‐conversion efficiency than the untreated DSSCs by 22 % and 27 %, respectively. This enhanced performance, mostly owing to the intramolecular charge‐transfer to TiO2 from the dye molecules that were anchored to the Si? COOH Nps, was confirmed by comparing the performance with two different RuII–bipyridine dyes (N719 and N749).  相似文献   

19.
The X‐ray structure analysis of the unexpected product of the reaction between 4‐(4‐methyl­phenyl)­but‐3‐en‐2‐one and amino­guanidine revealed the title compound, C12H17N4+·C2H3O2?·0.5C3H6O, consisting of a protonated amidine moiety joined to a substituted pyrazoline ring at the N1 atom. The amidine group is protonated and the positive charge is delocalized over the three C—N bonds in a similar manner to that found in guanidinium salts. The amidinium moiety of the cation is linked to the acetate anions through four N—H?O hydrogen bonds, with N?O distances of 2.749 (4), 2.848 (4), 2.904 (4) and 2.911 (4) Å. The pyrazoline ring adopts a flattened envelope conformation and the substituted phenyl ring is oriented perpendicular to the attached heterocycle. The acetone solvate molecule lies across a twofold rotation axis.  相似文献   

20.
Deprotonation of aminophosphaalkenes (RMe2Si)2C?PN(H)(R′) (R=Me, iPr; R′=tBu, 1‐adamantyl (1‐Ada), 2,4,6‐tBu3C6H2 (Mes*)) followed by reactions of the corresponding Li salts Li[(RMe2Si)2C?P(M)(R′)] with one equivalent of the corresponding P‐chlorophosphaalkenes (RMe2Si)2C?PCl provides bisphosphaalkenes (2,4‐diphospha‐3‐azapentadienes) [(RMe2Si)2C?P]2NR′. The thermally unstable tert‐butyliminobisphosphaalkene [(Me3Si)2C?P]2NtBu ( 4 a ) undergoes isomerisation reactions by Me3Si‐group migration that lead to mixtures of four‐membered heterocyles, but in the presence of an excess amount of (Me3Si)2C?PCl, 4 a furnishes an azatriphosphabicyclohexene C3(SiMe3)5P3NtBu ( 5 ) that gave red single crystals. Compound 5 contains a diphosphirane ring condensed with an azatriphospholene system that exhibits an endocylic P?C double bond and an exocyclic ylidic P(+)? C(?)(SiMe3)2 unit. Using the bulkier iPrMe2Si substituents at three‐coordinated carbon leads to slightly enhanced thermal stability of 2,4‐diphospha‐3‐azapentadienes [(iPrMe2Si)2C?P]2NR′ (R′=tBu: 4 b ; R′=1‐Ada: 8 ). According to a low‐temperature crystal‐structure determination, 8 adopts a non‐planar structure with two distinctly differently oriented P?C sites, but 31P NMR spectra in solution exhibit singlet signals. 31P NMR spectra also reveal that bulky Mes* groups (Mes*=2,4,6‐tBu3C6H2) at the central imino function lead to mixtures of symmetric and unsymmetric rotamers, thus implying hindered rotation around the P? N bonds in persistent compounds [(RMe2Si)2C?P]2NMes* ( 11 a , 11 b ). DFT calculations for the parent molecule [(H3Si)2C?P]2NCH3 suggest that the non‐planar distortion of compound 8 will have steric grounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号